NetREXX
Language Reference

Mike Cowlishaw and RexxLA

Version 4.05-GA of May 10, 2023

THE REXX LANGUAGE ASSOCIATION
NetRexx Programming Series
ISBN 978-90-819090-1-3

Publication Data

©Copyright The Rexx Language Association, 2011- 2023

All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy, Am-
steldijk 14, 1074 HR Amsterdam, a registered company governed by the laws of the Kingdom
of The Netherlands.

This edition is registered under ISBN 978-90-819090-1-3

ISBN 978-90-819090-1-3

97789081"909013" >

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Contents

II'he NetRexx Programming Series

I Introduction 1

[[.T Language Objectived 1

.27 Tanguage Concepty 4

[.37 " Acknowledgementd 9

L.4 Introduction to the current edition|
2 Netkexx Language Definition

P N § 11

P27 Characters and Encodingg 12

E.3~ Structure and General Synta¥ 13

P4 Types and Classe§ 20

22

P.6 Methods and Constructor 27

B.7 "Type conversiony 32

P.8 Expressions and Operatory 35

P9 Clauses and Instruction§ 42

E. 10 Assignments and Variable§ 43

PIT Indexed strings and Arrayyd 46
B Keyword Instructions 51

B.T " Annotation instructionl 52

B.2Z " Address instructionl 53

B.3~ Class instruction 55

B4 Do instructionl 58

B-5 Exitinstruction 60

B.6 Tfinstruction 61

B.7 Importinstruction 62

B.8~ Tterate instruction 64

B9

Leave instructionl 64

10

11

i

p.10

Loop instruction 65

B.IT

Method instruction 72

BIZ

Nop instruction 77

BI3

Numeric instruction 77

B.TZ

Options instruction 79

B.I5

Package instructionl 83

B16

Parse instruction 84

p.17

Properties instruction 85

BI8

Return instruction 87

B.I9

Say instruction 88

B20

Select instruction] 88

p.21

Sienal instruction 91

B2Z

Trace instruction 92

1

Program structure and concepts 98

AT

Program defaulty 100

EZ

Minor and Dependent classe§ 100

B>

Special names and methodd 104

EZ

JavaBean Suppori 107

g5

Parsing templated 111

E6

Numbers and Arithmetid 118

K7

Binary values and operation§ 127

B8

Exceptiond 130

g9

Thread Pool Supporf 133

g.10

Structured Lists Interfacd 134

p

built-in methods for NetRexx strings

p.1

abbrev(info |, length])] 139

b2 abs()] 139
b3 bZd([n]) 139

140
b5 center(length [,pad|)] 141

p.6 centre(length [,pad])] 141

p.7 changestr(needle, new) 141

b.8 charin(name, [start], [length]) 141
b9 charout(name,[char |, [start]) 142
p.I0 chars(name) 142

p.1T

compare(target [,pad])] 142

138

I

142

b.I3 copyindexed(sub) 142

b.TZ countstr(needle) 143
p.I5 cZd() 143
b.16_c2x(] 144
p.T7 datatype(option) 144
.18 dafe()] 145
p.19 delstr(n T Iength])] 145

p.20 delword(n [, Iength])] 145
146

p.227 dZ2c() 146

b.23 d2x([n]) 147

p.24 "exists(index) 147

p.2Z5 format([before T after[])] 148

p.26 1nsert(new | n |,length [,pad||]|)

p.27 Tastpos(needle [start])] 149

p.28 Teft(Tength [,pad])] 150
5.729 oth()] 150

p.30 Tinein(name,string) 150

p.3T Tineout(name,string) 150

p.32 Tower([n [length]]) 151

b33 max(number) 151

p34 min(number) 151

p.oo overlay(new | n |, length | ,pad|]])

p.36 pos(needle [start])] 152

.37 teverse()] 153
p.38 right(length [,pad])] 153

p.39 sequence(final) 153
b.40 sign()] 153

p.4T soundex(]] 154
p.42 space([n|,pad]]) 154

149

152

p.45 stream(name, [operation |, | stream_command |)|

p.44 “strip(Joption [,char[[])] 154

p.45 substr(n [, Iength T,pad[])] 155

p.46 subword(n [Iength]) 155
.47 time(] 155

p.48 translate(tableo, tablei [,pad]) 155

154

.49 frunc([n]) 156
p.50 upper(InT,length]])] 156

pb.5T verity(reference [,option [start[[)] 157

157

p.53 wordindex(n) 158

p.54 wordlength(n) 158
p.55 wordpos(phrase [,start])] 158
5.56 ds() 158

159
159

p.59 xZd(In]) 160

b Classic Rexx compatible functiong 161
p.1 date(j] 161

b.Z _time()] 163

p.3~ charin(name,[start], [length])] 165

p.Z charout(name,[char | [start])] 165

p.5 chars(name) 165

p.6 Tinein(name,string) 165

b.7 Tineout([name], [string [, [Tline]) 165

p.8 Tines(name) 165

b.9 stream(name, [operation |, [stream_command]|) 165

A" Appendix A - A Sample NetRexx Program| 168

B Appendix B - The netrexx.lang Package 170

B.T Exception classed 170

B2 The Rexxclas§ 171

B3~ Rexx constructory 171

B.4 Rexx arithmetic methodd 173

B.5 Rexx miscellaneous methodg 175

B6 The RexxIOclas§ 176

B.7 The RexxRexx clas§ 178

B8~ The RexxOperators interface clas§ 178

B9 The RexxSetclas§ 178

[C "Appendix C - Translator Options 180

185

Index 187

The NetRexx Programming Series

This book is part of a library, the NetRexx Programming Series, documenting the
NetRexx programming language and its use and applications. This section lists
the other publications in this series, and their roles. These books can be ordered
in convenient hardcopy and electronic formats from the Rexx Language Asso-

ciation.

Quick Start Guide

This guide is meant for an audience that
has done some programming and wants to
start quickly. It starts with a quick tour of
the language, and a section on installing the
NetRexx translator and how to run it. It also
contains help for troubleshooting if anything
in the installation does not work as designed,
and states current limits and restrictions of
the open source reference implementation.

Programming Guide

The Programming Guide is the one manual
that at the same time teaches programming,
shows lots of examples as they occur in the
real world, and explains about the internals
of the translator and how to interface with it.

Language Reference

Referred to as the NRL, this is meant as
the formal definition for the language, doc-
umenting its syntax and semantics, and pre-
scribing minimal functionality for language
implementers.

Pipelines Guide & Reference

The Data Flow oriented companion to
NetRexx, with its CMS Pipelines compati-
ble syntax, is documented in this manual. It
discusses running Pipes for NetRexx in the
command shell and the Workspace, and has
ample examples of defining your own stages
in NetRexx.

ii

Introduction

NetRexx is a general-purpose programming language inspired by two very dif-
ferent programming languages, Rexx" and Java' . It is designed for people, not
computers. In this respect it follows Rexx closely, with many of the concepts and
most of the syntax taken directly from Rexx or its object-oriented version, Ob-
ject Rexx. From Java it derives static typing, binary arithmetic, the object model,
and exception handling. The resulting language not only provides the scripting
capabilities and decimal arithmetic of Rexx, but also seamlessly extends to large
application development with fast binary arithmetic.

The open source reference implementation (version 3 and later) of NetRexx pro-
duces classes for the Java Virtual Machine, and in so doing demonstrates the
value of that concrete interface between language and machine: NetRexx classes
and Java classes are entirely equivalent — NetRexx can use any Java class (and
vice versa) and inherits the portability and robustness of the Java environment.

This document is in three parts:

1. The objectives of the NetRexx language and the concepts underlying its
design, and acknowledgements.

2. An overview and introduction to the NetRexx language.
3. The definition of the language.

Appendices include a sample NetRexx program, a description of an experimen-
tal feature, and some details of the contents of the netrexx.lang package.

1.1 Language Objectives

This document describes a programming language, called NetRexx, which is
derived from both Rexx and Java. NetRexx is intended as a dialect of Rexx that
can be as efficient and portable as languages such as Java, while preserving the
low threshold to learning and the ease of use of the original Rexx language.

1.1.1 Features of RExx

The Rexx programming languagell was designed with just one objective: to make
programming easier than it was before. The design achieved this by emphasiz-
ing readability and usability, with a minimum of special notations and restric-

1Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.

1

tions. It was consciously designed to make life easier for its users, rather than
for its implementers. One important feature of Rexx syntax is keyword safety.
Programming languages invariably need to evolve over time as the needs and
expectations of their users change, so this is an essential requirement for lan-
guages that are intended to be executed from source.

Keywords in Rexx are not globally reserved but are recognized only in con-
text. This language attribute has allowed the language to be extended substan-
tially over the years without invalidating existing programs. Even so, some ar-
eas of Rexx have proved difficult to extend — for example, keywords are reserved
within instructions such as do. Therefore, the design for NetRexx takes the con-
cept of keyword safety even further than in Rexx, and also improves extensibility
in other areas.

The great strengths of Rexx are its human-oriented features, including

« simplicity

+ coherent and uncluttered syntax

« comprehensive stringhandling

* case-insensitivity

« arbitrary precision decimal arithmetic.

Care has been taken to preserve these. Conversely, its interpretive nature has
always entailed a lack of efficiency: excellent Rexx compilers do exist, from IBM
and other companies, but cannot offer the full speed of statically-scoped lan-
guages such as CP or Java¥l.

1.1.2 Influence of Java

The system-independent design of Rexx makes it an obvious and natural fit
to a system-independent execution environment such as that provided by the
Java Virtual Machine (JVM). The JVM, especially when enhanced with “just-
in-time” bytecode compilers that compile bytecodes into native code just before
execution, offers an effective and attractive target environment for a language
like Rexx.

Choosing the JVM as a target environment does, however, place significant con-
straints on the design of a language suitable for that environment. For example,
the semantics of method invocation are in several ways determined by the en-
vironment rather than by the source language, and, to a large extent, the object
model (class structure, etc.) of the Java environment is imposed on languages
that use it.

Also, Java maintains the C concept of primitive datatypes; types (such as int,
a 32-bit signed integer) which allow efficient use of the underlying hardware
yet do not describe true objects. These types are pervasive in classes and inter-
faces written in the Java language; any language intending to use Java classes
effectively must provide access to these types.

2Kernighan, B. W.,, and Ritchie, D. M., The C Programming Language (second edition), ISBN 0-13-110362-8,
Prentice- Hall, 1988.
3Gosling, J. A, et al. The Java Language Specification, ISBN 0-201-63451-1, Addison-Wesley, 1996.

2

Equally, the exception (error handling) model of Java is pervasive, to the extent
that methods must check certain exceptions and declare those that are not han-
dled within the method. This makes it difficult to fit an alternative exception
model.

The constraints of safety, efficiency, and environment necessitated that NetRexx
would have to differ in some details of syntax and semantics from Rexx; unlike
Object Rexx, it could not be a fully upwards-compatible extension of the lan-
guagel. The need for changes, however, offered the opportunity to make some
significant simplifications and enhancements to the language, both to improve
its keyword safety and to strengthen other features of the original Rexx designf.
Some additions from Object Rexx and ANSI Rexx are also included.

Similarly, the concepts and philosophy of the Rexx design can profitably be
applied to avoid many of the minor irregularities that characterize the C and
Java language family, by providing suitable simplifications in the programming
model. For example, the NetRexx looping construct has only one form, rather
than three, and exception handling can be applied to all blocks rather than re-
quiring an extra construct. Also, as in Rexx, all NetRexx storage allocation and
de-allocation is implicit — an explicit new operator is not required.

Further, the human-oriented design features of Rexx (case-insensitivity for
identifiers, type deduction from context, automatic conversions where safe,
tracing, and a strong emphasis on string representations of common values
and numbers) make programming for the Java environment especially easy in
NetRexx.

1.1.3 A hybrid or a whole?

As in other mixtures, not all blends are a success; when first designing NetRexx,
it was not at all obvious whether the new language would be an improvement
on its parents, or would simply reflect the worst features of both.

The fulcrum of the design is perhaps the way in which datatyping is automated
without losing the static typing supported by Java. Typing in NetRexx is most
apparent at interfaces — where it provides most value — but within methods it is
subservient and does not obscure algorithms. A simple concept, binary classes,
also lets the programmer choose between robust decimal arithmetic and less
safe (but faster) binary arithmetic for advanced programming where perfor-
mance is a primary consideration.

The “seamless” integration of types into what was previously an essentially
typeless language does seem to have been a success, offering the advantages
of strong typing while preserving the ease of use and speed of development
that Rexx programmers have enjoyed.

4Nash, S. C., Object-Oriented REXX in Goldberg, G, and Smith, P. H. III, The Rexx Handbook, pp115-125, ISBN
0-07-023682-8, McGraw-Hill, Inc., New York, 1992.

5See Cowlishaw, M. E., The Early History of REXX, IEEE Annals of the History of Computing, ISSN 1058-6180, Vol
16, No. 4, Winter 1994, pp15-24, and Cowlishaw, M. F., The Future of Rexx, Proceedings of Winter 1993 Meeting/SHARE
80, Volume II, p.2709, SHARE Inc., Chicago, 1993.

See American National Standard for Information Technology — Programming Language REXX, X3.274-1996,
American National Standards Institute, New York, 1996.

The end result of adding Java typing capabilities to the Rexx language is a single
language that has both the Rexx strengths for scripting and for writing macros
for applications and the Java strengths of robustness, good efficiency, portability,
and security for application development.

1.2 Language Concepts

As described in the last section, NetRexx was created by applying the phi-
losophy of the Rexx language to the semantics required for programming
the Java Virtual Machine (JVM). Despite the assumption that the JVM is a
“target environment” for NetRexx, it is intended that the language not be
environment-dependent; the essentials of the language do not depend on the
JVM. Environment- dependent details, such as the primitive types supported,
are not part of the language specification.

The primary concepts of Rexx have been described before, in The Rexx Lan-
guage, but it is worth repeating them and also indicating where modifications
and additions have been necessary to support the concepts of statically-typed
and object-oriented environments. The remainder of this section is therefore a
summary of the principal concepts of NetRexx.

1.2.1 Readability

One concept was central to the evolution of Rexx syntax, and hence NetRexx
syntax: readability (used here in the sense of perceived legibility). Readability in
this sense is a somewhat subjective quality, but the general principle followed is
that the tokens which form a program can be written much as one might write
them in Western European languages (English, French, and so forth). Although
NetRexx is more formal than a natural language, its syntax is lexically similar
to everyday text.

The structure of the syntax means that the language is readily adapted to a vari-
ety of programming styles and layouts. This helps satisfy user preferences and
allows a lexical familiarity that also increases readability. Good readability leads
to enhanced understandability, thus yielding fewer errors both while writing a
program and while reading it for information, debugging, or maintenance.

Important factors here are:

1. Punctuation and other special notations are required only when absolutely
necessary to remove ambiguity (though punctuation may often be added
according to personal preference, so long as it is syntactically correct).
Where notations are used, they follow established conventions.

2. The language is essentially case-insensitive. A NetRexx programmer may
choose a style of use of uppercase and lowercase letters that he or she finds
most helpful (rather than a style chosen by some other programmer).

3. The classical constructs of structured and object-oriented programming are
available in NetRexx, and can undoubtedly lead to programs that are easier

4

to read than they might otherwise be. The simplicity and small number of
constructs also make NetRexx an excellent language for teaching the con-
cepts of good structure.

4. Loose binding between the physical lines in a program and the syntax of
the language ensures that even though programs are affected by line ends,
they are not irrevocably so. A clause may be spread over several lines or put
on just one line; this flexibility helps a programmer lay out the program in
the style felt to be most readable.

1.2.2 Natural data typing and decimal arithmetic

“Strong typing”, in which the values that a variable may take are tightly con-
strained, has been an attribute of some languages for many years. The great-
est advantage of strong typing is for the interfaces between program modules,
where errors are easy to introduce and difficult to catch. Errors within modules
that would be detected by strong typing (and which would not be detected from
context) are much rarer, certainly when compared with design errors, and in the
majority of cases do not justify the added program complexity.

NetRexx, therefore, treats types as unobtrusively as possible, with a simple syn-
tax for type description which makes it easy to make types explicit at interfaces
(for example, when describing the arguments to methods).

By default, common values (identifiers, numbers, and so on) are described in
the form of the symbolic notation (strings of characters) that a user would nor-
mally write to represent those values. This natural datatype for values also sup-
ports decimal arithmetic for numbers, so, from the user’s perspective, numbers
look like and are manipulated as strings, just as they would be in everyday use
on paper.

When dealing with values in this way, no internal or machine representation
of characters or numbers is exposed in the language, and so the need for many
data types is reduced. There are, for example, no fundamentally different con-
cepts of integer and real; there is just the single concept of number. The results
of all operations have a defined symbolic representation, and will therefore act
consistently and predictably for every correct implementation.

This concept also underlies the BASIC language; indeed, Kemeny and Kurtz’s
vision for BASIC included many of the fundamental principles that inspired
Rexx. For example, Thomas E. Kurtz wrote:

“Regarding variable types, we felt that a distinction between ‘fixed” and ‘floating” was less justi-
fied in 1964 than earlier ... to our potential audience the distinction between an integer number
and a non-integer number would seem esoteric. A number is a number is a number.”8

For Rexx, intended as a scripting language, this approach was ideal; symbolic
operations were all that were necessary.

For NetRexx, however, it is recognized that for some applications it is necessary

7Kemeny, J. G. and Kurtz, T. E., BASIC programming, John Wiley & Sons Inc., New York, 1967.
8Kurtz, T. E., BASIC in Wexelblat, R. L. (Ed), History of Programming Languages, ISBN 0-12-745040-8, Academic
Press, New York 1981.

to take full advantage of the performance of the underlying environment, and so
the language allows for the use and specification of binary arithmetic and types,
if available. A very simple mechanism (declaring a class or method to be binary)
is provided to indicate to the language processor that binary arithmetic and
types are to be used where applicable. In this case, as in other languages, extra
care has to be taken by the programmer to avoid exceeding limits of number
size and so on.

1.2.3 Emphasis on symbolic manipulation

Many values that NetRexx manipulates are (from the user’s point of view, at
least) in the form of strings of characters. Productivity is greatly enhanced if
these strings can be handled as easily as manipulating words on a page or in a
text editor. NetRexx therefore has a rich set of character manipulation operators
and methods, which operate on values of type Rexx (the name of the class of
NetRexx strings).

Concatenation, the most common string operation, is treated specially in NetRexx.
In addition to a conventional concatenate operator (“||”), the novel blank opera-
tor from Rexx concatenates two data strings together with a blank in between.
Furthermore, if two syntactically distinct terms (such as a string and a variable
name) are abutted, then the data strings are concatenated directly. These oper-
ators make it especially easy to build up complex character strings, and may at
any time be combined with the other operators.

For example, the say instruction consists of the keyword say followed by any
expression. In this instance of the instruction, if the variable n has the value “6”
then

say 'Sorry,' nx100/50'% were rejected’

would display the string

Sorry, 12% were rejected

Concatenation has a lower priority than the arithmetic operators. The order of
evaluation of the expression is therefore first the multiplication, then the di-
vision, then the concatenate-with-blank, and finally the direct concatenation.
Since the concatenation operators are distinct from the arithmetic operators,
very natural coercion (automatic conversion) between numbers and character
strings is possible. Further, explicit typecasting (conversion of types) is effected
by the same operators, at the same priority, making for a very natural and con-
sistent syntax for changing the types of results. For example,

i=int 100/7

would calculate the result of 100 divided by 7, convert that result to an integer
(assuming int describes an integer type) and then assign it to the variable i.

6

1.2.4 Nothing to declare

Consistent with the philosophy of simplicity, NetRexx does not require that
variables within methods be declared before use. Only the properties? of classes —
which may form part of their interface to other classes — need be listed formally.

Within methods, the type of variables is deduced statically from context, which
saves the programmer the menial task of stating the type explicitly. Of course,
if preferred, variables may be listed and assigned a type at the start of each
method.

1.2.5 Environment independence

The core NetRexx language is independent of both operating systems and hard-
ware. NetRexx programs, though, must be able to interact with their environ-
ment, which implies some dependence on that environment (for example, bi-
nary representations of numbers may be required). Certain areas of the lan-
guage are therefore described as being defined by the environment.

Where environment-independence is defined, however, there may be a loss of
efficiency — though this can usually be justified in view of the simplicity and
portability gained.

As an example, character string comparison in NetRexx is normally indepen-
dent of case and of leading and trailing blanks. (The string “ Yes " means the
same as “yes” in most applications.) However, the influence of underlying hard-
ware has often subtly affected this kind of design decision, so that many lan-
guages only allow trailing blanks but not leading blanks, and insist on exact case
matching. By contrast, NetRexx provides the human-oriented relaxed compar-
ison for strings as default, with optional “strict comparison” operators.

1.2.6 Limited span syntactic units

The fundamental unit of syntax in the NetRexx language is the clause, which is
a piece of program text terminated by a semicolon (usually implied by the end
of a line). The span of syntactic units is therefore small, usually one line or less.
This means that the syntax parser in the language processor can rapidly detect
and locate errors, which in turn means that error messages can be both precise
and concise.

It is difficult to provide good diagnostics for languages (such as Pascal and its
derivatives) that have large fundamental syntactic units. For these languages, a
small error can often have a major or distributed effect on the parser, which can
lead to multiple error messages or even misleading error messages.

9Class variables and instance variables.

1.2.7 Dealing with reality

A computer language is a tool for use by real people to do real work. Any tool
must, above all, be reliable. In the case of a language this means that it should
do what the user expects. User expectations are generally based on prior expe-
rience, including the use of various programming and natural languages, and
on the human ability to abstract and generalize.

It is difficult to define exactly how to meet user expectations, but it helps to
ask the question “Could there be a high astonishment factor associated with this
feature?”. If a feature, accidentally misused, gives apparently unpredictable re-
sults, then it has a high astonishment factor and is therefore undesirable.

Another important attribute of a reliable software tool is consistency. A consis-
tent language is by definition predictable and is often elegant. The danger here
is to assume that because a rule is consistent and easily described, it is therefore
simple to understand. Unfortunately, some of the most elegant rules can lead to
effects that are completely alien to the intuition and expectations of a user who,
after all, is human.

These constraints make programming language design more of an art than a
science, if the usability of the language is a primary goal. The problems are fur-
ther compounded for NetRexx because the language is suitable for both script-
ing (where rapid development and ease of use are paramount) and for appli-
cation development (where some programmers prefer extensive checking and
redundant coding). These conflicting goals are balanced in NetRexx by provid-
ing automatic handling of many tasks (such as conversions between different
representations of strings and numbers) yet allowing for “strict” options which,
for example, may require that all types be explicit, identifiers be identical in case
as well as spelling, and so on.

1.2.8 Be adaptable

Wherever possible NetRexx allows for the extension of instructions and other
language constructs, building on the experience gained with Rexx. For example,
there is a useful set of common characters available for future use, since only
small set is used for the few special notations in the language.

Similarly, the rules for keyword recognition allow instructions to be added
whenever required without compromising the integrity of existing programs.
There are no reserved keywords in NetRexx; variable names chosen by a pro-
grammer always take precedence over recognition of keywords. This ensures
that NetRexx programs may safely be executed, from source, at a time or place
remote from their original writing — even if in the meantime new keywords
have been added to the language.

A language needs to be adaptable because it certainly will be used for applications
not foreseen by the designer. Like all programming languages, NetRexx may (in-
deed, probably will) prove inadequate for certain future applications; room for
expansion and change is included to make the language more adaptable and

8

robust.

1.2.9 Keep the language small

NetRexx is designed as a small language. It is not the sum of all the features of
Rexx and of Java; rather, unnecessary features have been omitted. The intention
has been to keep the language as small as possible, so that users can rapidly
grasp most of the language. This means that:

« the language appears less formidable to the new user

+ documentation is smaller and simpler

« the experienced user can be aware of all the abilities of the language, and
so has the whole tool at his or her disposal

« there are few exceptions, special cases, or rarely used embellishments

+ the language is easier to implement.

Many languages have accreted “neat” features which make certain algorithms
easier to express; analysis shows that many of these are rarely used. As a rough
rule-of-thumb, features that simply provided alternative ways of writing code
were added to Rexx and NetRexx only if they were likely to be used more often
than once in five thousand clauses.

1.2.10 No defined size or shape limits

The language does not define limits on the size or shape of any of its tokens or
data (although there may be implementation restrictions). It does, however, de-
fine a few minimum requirements that must be satisfied by an implementation.
Wherever an implementation restriction has to be applied, it is recommended
that it should be of such a magnitude that few (if any) users will be affected.

Where arbitrary implementation limits are necessary, the language requires that
the implementer use familiar and memorable decimal values for the limits. For
example 250 would be used in preference to 255, 500 to 512, and so on.

1.3 Acknowledgements

Much of NetRexx is based on earlier work, and I am indebted to the hundreds
of people who contributed to the development of Rexx, Object Rexx, and Java.

In the 1990s I gained many insights from the deliberations of the members of
the X3]J18 technical committee, which, under the remarkable chairmanship of
Brian Marks, led to the 1996 ANSI Standard for Rexx. Many of the committee’s
suggestions are incorporated in NetRexx.

Equally important have been the comments and feedback from the pioneering
users of NetRexx, and all those people who sent me comments on the language
either directly or in the NetRexx mailing list or forum. I would especially like
to thank Ian Brackenbury, Barry Feigenbaum, Davis Foulger, Norio Furukawa,

9

3.00

3.07

4.01

Dion Gillard, Martin Lafaix, Max Marsiglietti, and Trevor Turton for their in-
sightful comments and encouragement.

I also thank IBM; my appointment as an IBM Fellow made it possible to make
the implementation of NetRexx a reality in months rather than years. IBM has
also donated the NetRexx implementation to the Rexx Language Association,
with special thanks due to Matthew Emmons for piloting NetRexx through the
convoluted legal and other processes, and to René Jansen for massaging the
NetRexx reference implementation into shape for its Open Source release.

Finally, this document has relied on old but trusted technology for its creation:
its GML markup was processed using macros originally written by Bob O'Hara,
and formatted using SCRIPT/VS, the IBM Document Composition Facility. Ge-
off Bartlett provided critical advice on character sets and fonts for the NetRexx
book. This version uses a set of Rexx programs to translate that same GML
markup to OpenOffice Document Text format (XML files).

Mike Cowlishaw, 1997 and 2009

1.4 Introduction to the current edition

After the open sourcing of the NetRexx reference implementation in 2011 the
RexxLA NetRexx ARB (Architecture Review Board), in which Mike Cowlishaw
takes part as Language Architect, took responsibility for the definition of the
language. Starting from version 3.00, changes in the language definitiont in this
publication will be marked with the introducing release number, in the form of
a margin note.

For this version of the NetRexx Language Reference, a NetRexx program was
used to translate the original GML markup to XgIXTgX. This edition describes
the 4.05-GA version of the language and supercedes all earlier versions. The
previously included chapter “A Quick Tour of the NetRexx Language” can now
be exclusively found in the NetRexx Quickstart Guide.

Version 4, a new major version number of the language translator, signifies a
major milestone in the development of this implementation. Thanks to Marc
Remes, NetRexx now supports the Java Platform Module System (JPMS), which
enables it to compile (or interpret) programs on current JDK versions.

NetRexx 4 depends on JSR 203 (NIO.2) and thus requires a minimum JDK level
of Java 7, whereas NetRexx 3 runs on Java 6. NetRexx 4 compiles and runs on
Java 7/8 (without JPMS) and on Java 9+ (with JPMS) including the most re-
cent versions.

René Vincent Jansen, May 10, 2023

10This publication is traditionally known as NRL, short for NetRexx Language Reference. This title however, has (for
reasons of clarity for new users) been changed in the filename of the PDF version of the book in favour of a longer and
more descriptive name.

111DK 9,11,13,15 and 17 have been tested.

10

NetRexx Language Definition

This part of the document describes the NetRexx language, version 4.05-
GA. This version includes the original NetRexx language referencel2 together
with additions made from 1997 through 2000 and previously published in the
NetRexx Language Supplement.

The language is described first in terms of the characters from which it is com-
posed and its low-level syntax, and then progressively through more complex
constructions. Finally, special sections describe the semantics of the more com-
plicated areas.

Some features of the language, such as options keywords and binary arithmetic,
are implementation-dependent. Rather than leaving these important aspects
entirely abstract, this description includes summaries of the treatment of such
items in the reference implementation of NetRexx. The reference implementation
is based on the Java environment and class libraries.

Paragraphs that refer to the reference implementation, and are therefore not strictly part
of the language definition, are shown in italics, like this one.

2.1 Notations

In this part of the book, various notations such as changes of font are used for
clarity. Within the text, a sans-serif bold font is used to indicate keywords, and an
italic font is used to indicate technical terms. An italic font is also used to indicate
a reference to a technical term defined elsewhere or a word in a syntax diagram that
names a segment of syntax.

Similarly, in the syntax diagrams in this book, words (symbols) in the sans-
serif bold font also denote keywords or sub-keywords, and words (such as ex-
pression) in italics denote a token or collection of tokens defined elsewhere. The
brackets [and] delimit optional (and possibly alternative) parts of the instruc-
tions, whereas the braces { and } indicate that one of a number of alternatives
must be selected. An ellipsis (...) following a bracket indicates that the bracketed
part of the clause may optionally be repeated.

Occasionally in syntax diagrams (e.g., for indexed references) brackets are
“real” (that is, a bracket is required in the syntax; it is not marking an optional
part). These brackets are enclosed in single quotes, thus: '[" or "]".

Note that the keywords and sub-keywords in the syntax diagrams are not case-

12The NetRexx Language, M. F. Cowlishaw, ISBN 0-13-806332-X, Prentice-Hall, 1997

11

sensitive: the symbols "IF” “If” and ”iF” would all match the keyword shown
in a syntax diagram as if.

0

Note also that most of the clause delimiters (”;”) shown can usually be omitted
as they will be implied by the end of a line.

2.2 Characters and Encodings

In the definition of a programming language it is important to emphasize the
distinction between a character and the coded representation B (encoding) of a
character. The character "A”, for example, is the first letter of the English (Ro-
man) alphabet, and this meaning is independent of any specific coded repre-
sentation of that character. Different coded character sets (such as, for example,
the ASCII @ and EBCDIC B codes) use quite different encodings for this char-
acter (decimal values 65 and 193, respectively). Except where stated otherwise,
this book uses characters to convey meaning and not to imply a specific charac-
ter code (the exceptions are certain operations that specifically convert between
characters and their representations). At no time is NetRexx concerned with the
glyph (actual appearance) of a character.

2.2.1 Character Sets

Programming in the NetRexx language can be considered to involve the use of
two character sets. The first is used for expressing the NetRexx program itself,
and is the relatively small set of characters described in the next section. The
second character set is the set of characters that can be used as character data
by a particular implementation of a NetRexx language processor. This charac-
ter set may be limited in size (sometimes to a limit of 256 different characters,
which have a convenient 8-bit representation), or it may be much larger. The
Unicode ™ character set, for example, allows for 1,114,112 code points, of which
currently 128,000 are defined as characters. These are represented, depending
on the serialization format, in one to four bytes.

Usually, most or all of the characters in the second (data) character set are also
allowed within a NetRexx program, but only within commentary or immedi-
ate (literal) data. The NetRexx language explicitly defines the first character
set, in order that programs will be portable and understandable; at the same
time it avoids restrictions due to the language itself on the character set used
for data. However, where the language itself manipulates or inspects the data
(as when carrying out arithmetic operations), there may be requirements on
the data character set (for example, numbers can only be expressed if there are
digit characters in the set).

13These terms have the meanings as defined by the International Organization for Standardization, in ISO 2382
:cit.Data processing - Vocabulary:ecit..

14 American Standard Code for Information Interchange.

15 Extended Binary Coded Decimal Interchange Code.

16The Unicode Standard, version 6.0., The Unicode Consortium, Mountain View, 2011, ISBN 09781936213016.

12

2.3 Structure and General Syntax

A NetRexx program is built up out of a series of clauses that are composed of:
zero or more blanks (which are ignored); a sequence of tokens (described in
this section); zero or more blanks (again ignored); and the delimiter ”;” (semi-
colon) which may be implied by line-ends or certain keywords. Conceptually,
each clause is scanned from left to right before execution and the tokens com-

posing it are resolved.

Identifiers (known as symbols) and numbers are recognized at this stage, com-
ments (described below) are removed, and multiple blanks (except within lit-
eral strings) are reduced to single blanks. Blanks adjacent to operator characters
(see page [[7)) and special characters (see page [[7]) are also removed.

2.3.1 Blanks and White Space

Blanks (spaces) may be freely used in a program to improve appearance and
layout, and most are ignored. Blanks, however, are usually significant

« within literal strings (see below)

+ between two tokens that are not special characters (for example, between
two symbols or keywords)

* between the two characters forming a comment delimiter

« immediately outside parentheses (”(” and ”)”) or brackets (”[” and ”]”).

For implementations that support tabulation (tab) and form feed characters,
these characters outside of literal strings are treated as if they were a single
blank; similarly, if the last character in a NetRexx program is the End-of-file
character (EOF, encoded in ASCII as decimal 26), that character is ignored.

2.3.2 Comments

Commentary is included in a NetRexx program by means of comments. Two
forms of comment notation are provided: line comments are ended by the end
of the line on which they start, and block comments are typically used for more
extensive commentary.

Line comments A line comment is started by a sequence of two adjacent hy-
phens (“——"); all characters following that sequence up to the end of the
line are then ignored by the NetRexx language processor.

Example:

i=j+7 -- this line comment follows an assignment

Block comments A block comment is started by the sequence of characters
”/*”, and is ended by the same sequence reversed, "*/”. Within these de-
limiters any characters are allowed (including quotes, which need not be
paired). Block comments may be nested, which is to say that ”/*” and "*/”
must pair correctly. Block comments may be anywhere, and may be of any

13

length. When a block comment is found, it is treated as though it were a
blank (which may then be removed, if adjacent to a special character).
Example:

/* This 1s a valid block comment x/

The two characters forming a comment delimiter (”/*” or ”"*/”) must be
adjacent (that is, they may not be separated by blanks or a line-end).
Shebang NetRexx supports shebang on supported operating systems/shells. A
shebang defines the first line in a script as #! followed by the program which
executes the script. The translator ignores such line. It is mostly relevant

when interpreting NetRexx programs:

$ cat hello.nrx
#!/usr/bin/env nr

class hello
method main(args=String[]) static
say 'Hello world!'
$ chmod 755 hello.nrx
$./hello.nrx
Hello world!

The script uses the ‘bin/nr’ script, which starts the translator as interpreter.
When execute access is set, the script can be executed as such.

Note: It is recommended that NetRexx programs start with a block comment
that describes the program. Not only is this good programming practice, but
some implementations may use this to distinguish NetRexx programs from
other languages. Implementation minimum: Implementations should support
nested block comments to a depth of at least 10. The length of a comment should
not be restricted, in that it should be possible to “comment out” an entire pro-
gram.

2.3.3 Tokens

The essential components of clauses are called tokens. These may be of any
length, unless limited by implementation restrictions, ™ and are separated by
blanks, comments, ends of lines, or by the nature of the tokens themselves.

The tokens are:

Literal strings A sequence including any characters that can safely be repre-
sented in an implementation ® and delimited by the single quote character
(") or the double-quote (”). Use ”” to include a ” in a literal string delim-
ited by ”, and similarly use two single quotes to include a single quote in a

7Wherever arbitrary implementation restrictions are applied, the size of the restriction should be a number that is
readily memorable in the decimal system; that is, one of 1, 25, or 5 multiplied by a power of ten. 500 is preferred to 512,
the number 250 is more “natural” than 256, and so on. Limits expressed in digits should be a multiple of three.

185ome implementations may not allow certain “control characters” in literal strings. These characters may be in-
cluded in literal strings by using one of the escape sequences provided.

14

TABLE 1: Escape sequences

\t the escape sequence represents a tabulation (tab) character

\n the escape sequence represents a new-line (line feed) character

\r the escape sequence represents a return (carriage return) character

\f the escape sequence represents a form-feed character

\” the escape sequence represents a double-quote character

\’ the escape sequence represents a single-quote character

\ the escape sequence represents a backslash character

\- the escape sequence represents a “null” character (the character whose encoding

equals zero), used to indicate continuation in a say instruction

\O(zero) the escape sequence represents a “null” character (the character whose encoding

equals zero); an alternative to \-

\xhh the escape sequence represents a character whose encoding is given by the two

hexadecimal digits ("hh”) following the “x”. If the character encoding for the im-
plementation requires more than two hexadecimal digits, they are padded with
zero digits on the left.

\uhhhh the escape sequence represents a character whose encoding is given by the four

hexadecimal digits ("hhhh”) following the “u”. It is an error to use this escape
if the character encoding for the implementation requires fewer than four hex-
adecimal digits.

literal string delimited by single quotes. A literal string is a constant and its
contents will never be modified by NetRexx. Literal strings must be com-
plete on a single line (this means that unmatched quotes may be detected
on the line that they occur). Any string with no characters (i.e., a string of
length 0) is called a null string.

Examples:

‘Fred’

AV

"Don't Panic!"

T

‘You shouldn''t' /* Same as "You shouldn't" x/

v /* A null string */

Within literal strings, characters that cannot safely or easily be represented
(for example “control characters”) may be introduced using an escape se-
quence. An escape sequence starts with a backslash (”\”), which must then
be followed immediately by one of the following (letters may be in either
uppercase or lowercase) - see table [l.

Hexadecimal digits for use in the escape sequences above may be any dec-
imal digit (0-9) or any of the first six alphabetic characters (a-f), in either
lowercase or uppercase. Examples:

"You shouldnt” /x Same as "You shouldn’'t"” =x/

'"\x6d\u0066\x63' /* In Unicode: 'mfc' x/
"“\\\u005C" /* In Unicode, two backslashes x/

15

Implementation minimum: Implementations should support literal strings
of at least 100 characters. (But note that the length of string expression re-
sults, etc., should have a much larger minimum, normally only limited by
the amount of storage available.)

Symbols Symbols are groups of characters selected from the Roman alphabet
in uppercase or lowercase (A-Z, a-z), the Arabic numerals (0-9), or the
characters underscore, dollar, and euro™ (”_$ €”) Implementations may
also allow other alphabetic and numeric characters in symbols to improve
the readability of programs in languages other than English. These addi-
tional characters are known as extra letters and extra digits.

Examples:

DanYrOgof

minx

Elan

$virtual3D

A symbol may include other characters only when the first character of the
symbol is a digit (0-9 or an extra digit). In this case, it is a numeric symbol
- it may include a period (”.”) and it must have the syntax of a number.
This may be simple number, which is a sequence of digits with at most one
period (which may not be the final character of the sequence), or it may be
a hexadecimal or binary numeric symbol(see page [Y) , or it may be a number
expressed in exponential notation.

A number in exponential notation is a simple number followed immedi-
ately by the sequence "E” (or ”e”), followed immediately by a sign (”+”
or ”-"), Bl followed immediately by one or more digits (which may not be
followed by any other symbol characters).

Examples:

1

1.3

12.007

17.3E-12

3e+12

0.03E+9

When extra digits are used in numeric symbols, they must represent values

in the range zero through nine. When numeric symbols are used as num-

bers, any extra digits are first converted to the corresponding character in

the range 0-9, and then the symbol follows the usual rules for numbers in
NetRexx (that is, the most significant digit is on the left, etc.).

In the reference implementation, the extra letters are those characters (excluding

A-Z, a-z, and underscore) that result in 1 when tested with
java.lang.Character.is]avaldentifierPart. Similarly, the extra digits are those
characters (excluding 0-9) that result in 1 when tested with java.lang.Character.isDigit.

9Note that only UTF8-encoded source files can currently use the euro character.

201t s expected that implementations of NetRexx will be based on Unicode or a similarly rich character set. However,
portability to implementations with smaller character sets may be compromised when extra letters or extra digits are
used in a program.

21The sign in this context is part of the symbol; it is not an operator.

16

The meaning of a symbol depends on the context in which it is used. For
example, a symbol may be a constant (if a number), a keyword, the name
of a variable, or identify some algorithm.

It is recommended that the dollar and euro only be used in symbols in me-
chanically generated programs or where otherwise essential. The NetRexx
translator internally uses $0n and $n - where n is one or more digits - as
class constants and temporary variables. It is advisable not use such sym-
bols as property variable names, as this may create conflicts in specific cir-
cumstances.

Implementation minimum: Implementations should support symbols of
at least 50 characters. (But note that the length of its value, if it is a string
variable, should have a much larger limit.)

Operator characters The characters+ - * % |/ & \= < >are used (sometimes
in combination) to indicate operations (see page Bf) in expressions. A few
of these are also used in parsing templates, and the equals sign is also used
to indicate assignment. Blanks adjacent to operator characters are removed,
so, for example, the sequences:

345>=123
345 >=123
345 >= 123
345 > = 123

are identical in meaning. Some of these characters may not be available in
all character sets, and if this is the case appropriate translations may be
used. Note: The sequences "-", ”/*”, and “*/” are comment delimiters, as
described earlier. The sequences “++” and ”\\” are not valid in NetRexx
programs.

Special characters The characters ., ;) (] [together with the operator char-
acters have special significance when found outside of literal strings, and
constitute the set of special characters. They all act as token delimiters, and
blanks adjacent to any of these (except the period) are removed, except that
a blank adjacent to the outside of a parenthesis or bracket is only deleted
if it is also adjacent to another special character (unless this is a parenthe-
sis or bracket and the blank is outside it, too). Some of these characters
may not be available in all character sets, and if this is the case appropriate
translations may be used.

To illustrate how a clause is composed out of tokens, consider this example:
'"REPEAT' B + 3;

This is composed of six tokens: a literal string, a blank operator (described later),
a symbol (which is probably the name of a variable), an operator, a second sym-
bol (a number), and a semicolon. The blanks between the “B” and the "+” and
between the "+” and the ”3” are removed. However one of the blanks between
the '/REPEAT” and the “B” remains as an operator. Thus the clause is treated as
though written:

'REPEAT" B+3;

17

2.3.4 Implied semicolons and continuations

A semicolon (clause end) is implied at the end of each line, except if:

1. The line ends in the middle of a block comment, in which case the clause
continues at the end of the block comment.

2. The last token was a hyphen. In this case the hyphen is functionally re-
placed by a blank, and hence acts as a continuation character.

This means that semicolons need only be included to separate multiple clauses
on a single line.

Notes:

1. A comment is not a token, so therefore a comment may follow the contin-
uation character on a line.

2. Semicolons are added automatically by NetRexx after certain instruction
keywords when in the correct context. The keywords that may have this
effect are else, finally, otherwise, then; they become complete clauses in
their own right when this occurs. These special cases reduce program entry
errors significantly.

2.3.5 The case of names and symbols

In general, NetRexx is a case-insensitive language. That is, the names of key-
words, variables, and so on, will be recognized independently of the case
used for each letter in a name; the name "Swildon” would match the name
”"swilDon”.

NetRexx, however, uses names that may be visible outside the NetRexx pro-
gram, and these may well be referenced by case-sensitive languages. Therefore,
any name that has an external use (such as the name of a property, method,
constructor, or class) has a defined spelling, in which each letter of the name
has the case used for that letter when the name was first defined or used.

Similarly, the lookup of external names is both case-preserving and case-insensitive.
If a class, method, or property is referenced by the name “Foo”, for example,

an exact-case match will first be tried at each point that a search is made. If this
succeeds, the search for a matching name is complete. If it does not succeed,

a case-insensitive search in the same context is carried out, and if one item is
found, then the search is complete. If more than one item matches then the
reference is ambiguous, and an error is reported.

Implementations are encouraged to offer an option that requires that all name
matches are exact (case-sensitive), for programmers or house-styles that prefer
that approach to name matching.

18

2.3.6 Hexadecimal and binary numeric symbols

A hexadecimal numeric symbol describes a whole number, and is of the form
nXstring. Here, n is a simple number with no decimal part (and optional lead-
ing insignificant zeros) which describes the effective length of the hexadecimal
string, the X (which may be in lowercase) indicates that the notation is hexadec-
imal, and string is a string of one or more hexadecimal characters (characters
from the ranges “a-f”, "A-F”, and the digits ”"0-9”).

The string is taken as a signed number expressed in n hexadecimal characters.
If necessary, string is padded on the left with ”0” characters (note, not ”sign-
extended”) to length n characters.

If the most significant (left-most) bit of the resulting string is zero then the num-
ber is positive; otherwise it is a negative number in twos-complement form. In
both cases it is converted to a NetRexx number which may, therefore, be neg-
ative. The result of the conversion is a number comprised of the Arabic digits

i

0-9, with no insignificant leading zeros but possibly with a leading ”-”.

The value n may not be less than the number of characters in string, with the
single exception that it may be zero, which indicates that the number is always
positive (as though n were greater than the the length of string).

Examples:

1x8 == -8
2x8 == 8
2x08 = 8
0x08 == 8
0x10 == 16
0x81 == 129
2x81 == -127
3x81 == 129
4x81 == 129
04x81 == 129
16x81 == 129
4xF081 == -3967

8xF081 == 61569
0Xf081 == 61569

A binary numeric symbol describes a whole number using the same rules, except
that the identifying character is B or b, and the digits of string must be either 0
or 1, each representing a single bit.

Examples:

1b0 == 0

1bl == -1

0bl0 == 2

0b100 == 4

4b1000 == -8

8B1000 == 8

Note: Hexadecimal and binary numeric symbols are a purely syntactic device
for representing decimal whole numbers. That is, they are recognized only
within the source of a NetRexx program, and are not equivalent to a literal

19

string with the same characters within quotes.

2.4 Types and Classes

Programs written in the NetRexx language manipulate values, such as names,
numbers, and other representations of data. All such values have an associated
type (also known as a signature).

The type of a value is a descriptor which identifies the nature of the value and
the operations that may be carried out on that value.

A type is normally defined by a class, which is a named collection of values
(called properties) and procedures (called methods) for carrying out operations
on the properties.

For example, a character string in NetRexx is usually of type Rexx, which will
be implemented by the class called Rexx. The class Rexx defines the properties
of the string (a sequence of characters) and the methods that work on strings.
This type of string may be the subject of arithmetic operations as well as more
conventional string operations such as concatenation, and so the methods im-
plement string arithmetic as well as other string operations.

The names of types can further be qualified by the name of a package where the
class is held. See the package instruction for details of packages; in summary, a
package name is a sequence of one or more non-numeric symbols, separated by
periods. Thus, if the Rexx class was part of the netrexx.lang package, & then its
qualified type would be netrexx.lang.Rexx.

In general, only the class name need be specified to refer to a type. However, if a
class of the same name exists in more than one known (imported) package, then
the name should be qualified by the package name. That is, if the use of just the
class name does not uniquely identify the class then the reference is ambiguous
and an error is reported.

2.4.1 Primitive types

Implementations may optionally provide primitive types for efficiency. Primi-
tive types are “built-in” types that are not necessarily implemented as classes.
They typically represent concepts native to the underlying environment (such
as 32-bit binary integer numbers) and may exhibit semantics that are different
from other types. NetRexx, however, makes no syntax distinction in the names
of primitive types, and assumes binary constructors (see page [29) exist for prim-
itive values.

Primitive types are necessary when performance is an overriding consideration,
and so this definition will assume that primitive types corresponding to the
common binary number formats are available and will describe how they differ
from other types, where appropriate.

22This is in fact where it may be found in the reference implementation.

20

In the reference implementation, the names of the primitive types are:
boolean char byte short int long float double

where the first two describe a single-bit value and Unicode character respectively, and
the remainder describe signed numbers of various formats. The main difference between
these and other types is that the primitive types are not a subclass of Object, so they
cannot be assigned to a variable of type Object or passed to methods by reference”. To
use them in this way, an object must be created to "wrap” them; Java provides classes
for this (for example, the class Long).

2.4.2 Dimensioned types

Another feature that is provided for efficiency is the concept of dimensioned types,
which are types (normal or primitive) that have an associated dimension (in the
sense of the dimensions of an array). Dimensioned values are described in detail
in the section on Arrays (see page @) .

The dimension of a dimensioned type is represented in NetRexx programs by
square brackets enclosing zero or more commas, where the dimension is given
by the number of commas, plus one. A dimensioned type is distinct from the
type of the same name but with no dimensions.

Examples:

Rexx
int
Rexx[]
int[,,]

The examples show a normal type, a primitive type, and a dimensioned version
of each (of dimension 1 and 3 respectively). The latter type would result from
constructing an array thus:

myarray=int[10,10,10]

That is, the dimension of the type matches the count of indexes defined for the
array.

2.4.3 Minor and Dependent classes

A minor class in NetRexx is a class whose name is qualified by the name of an-
other class, called its parent. This qualification is indicated by the form of the
name of the class: the short name of the minor class is prefixed by the name of
its parent class (separated by a period). For example, if the parent is called Foo
then the full name of a minor class Bar would be written Foo.Bar.

A dependent class is a minor class that has a link to its parent class that allows a
child object simplified access to its parent object and its properties.

These refinements of classes and are described in the section Minor and Depen-

dent classes (see page [[00) .

21

2.5 Terms

A term in NetRexx is a syntactic unit which describes some value (such as a
literal string, a variable, or the result of some computation) that can be manip-
ulated in a NetRexx program.

Terms may be either simple (consisting of a single element) or compound (con-
sisting of more than one element, with a period and no other characters between
each element).

2,51 Simple terms

A simple term may be:

« A literal string (see page [[4) - a character string delimited by quotes, which
is a constant.

* A symbol (see page[[§) . A symbol that does not begin with a digit identifies
a variable, a value, or a type. One that does begin with a digit is a numeric
symbol, which is a constant.

* A method call (see page £7) , which is of the form

symbol ([expression[,expression]...])

« An indexed reference (see page i) , which is of the form &
symbol'['[expression[,expression]...]"]"’

* An array initializer (see page f9) , which is of the form

14

"["expression[,expression]...’]

* A sub-expression (see page () , which consists of any expression enclosed
within a left and a right parenthesis.

Blanks are not permitted between the symbol in a method call and the ”(”, or
between the symbol in an indexed reference and the "[”.

Within simple terms, method calls with no arguments (that is, with no expres-
sions between the parentheses) may be expressed without the parentheses pro-
vided that they refer to a method in the current class (or to a static method in
a class used by the current class) and do not refer to a constructor (see page B1))
. An implementation may optionally provide a mechanism that disallows this
parenthesis omission.

2.5.2 Compound terms

Compound terms may start with any simple term, and, in addition, may start
with a qualified class name (see page B3) or a qualified constructor (see page
P7) . These last two both start with a package name (a sequence of non-numeric
symbols separated by periods and ending in a period).

23The notations ' [’ and ']’ indicate square brackets appearing in the NetRexx program.

22

This first part of a compound term is known as the stub of the term. Example
stubs:

"A string”

Arca

12.10

paint(g)

indexedVar[i+1]

("A" "string")

java.lang.Math -- qualified class name
netrexx.lang.Rexx(1) -- qualified constructor

All stubs are syntactically valid terms (either simple or compound) and may
optionally be followed by a continuation, which is one or more additional non-
numeric symbols, method calls, or indexed references, separated from each
other and from the stub by connectors which are periods. Example compound
terms:

"A rabbit”.word(2).pos('b’)
Fluffy.left(3)

12.10.max(j)
paint(g).picture
indexedVar[i+1].length

("A" "string").word (1)
java.lang.Math.PI
java.lang.Math.log(10)

Within compound terms, method calls with no arguments (that is, with no ex-
pressions between the parentheses) may be expressed without the parentheses
provided that they do not refer to a constructor (see page B1) . For example, the
term:

Thread.currentThread().suspend()

could be written:
Thread.currentThread.suspend

An implementation may optionally provide a mechanism that disallows this
parenthesis omission.

2.5.3 Evaluation of terms

Simple terms are evaluated as a whole, as described below. Compound terms
are evaluated from left to right. First the stub is evaluated according to the rules
detailed below. The type of the value of the stub then qualifies the next element
of the term (if any) which is then evaluated (again, the exact rules are detailed
below). This process is then repeated for each element in the term.

For instance, for the example above:
"A rabbit".word(2).pos('b")

23

the evaluation proceeds as follows:

1. The stub (”A rabbit”) is evaluated, resulting in a string of type Rexx.

2. Because that string is of type Rexx, the Rexx class is then searched for the
word method. This is then invoked on the string, with argument 2. In other
words, the word method is invoked with the string ” A rabbit” as its current
context (the properties of the Rexx class when the method is invoked reflect
that value).

This returns a new string of type Rexx, “rabbit” (the second word in the
original string).

3. In the same way as before, the pos method of the Rexx class is then invoked
on the new string, with argument “b”.

This returns a new string of type Rexx, “3” (the position of the first “b” in
the previous result).

This value, ”3”, is the final value of the term.

The remainder of this section gives the details of term evaluation; it is best
skipped on first reading.

2.5.4 Simple term evaluation

All simple terms may also be used as stubs, and are evaluated in precisely the
same way as stubs, as described below. For example, numeric symbols are eval-
uated as though they were enclosed in quotes; their value is a string of type
RExx.

In binary classes (see page p7) , however, simple terms that are strings or nu-
meric symbols are given an implementation-defined string or primitive type re-
spectively, as described in the section on Binary values and operations (see page

[27)

2.5.5 Stub evaluation

A term’s stub is evaluated according to the following rules:

« If the stub is a literal string, its value is the string, of type Rexx, constructed
from that literal.

« If the stub is a numeric symbol, its value is the string, of type Rexx, con-
structed from that literal (as though the literal were enclosed in quotes).

« If the stub is an unqualified method or constructor call, or a qualified con-
structor call, then its value and type is the result of invoking the method
identified by the stub, as described in Methods and Constructors (see page
E7) -

« If the stub is a (non-numeric) symbol, then its value and type will be de-
termined by whichever of the following is first found:

1. A local variable or method argument within the current method, or a
property in the current class.

24

2. A method whose name matches the symbol, and takes no arguments,
and that is not a constructor, in the current class. B If the stub is part
of a compound symbol, then it may also be in a superclass, searching
upwards from the current class.

3. A static or constant property, or a static method, B whose name matches
the symbol (and that takes no arguments, if a method) in a class listed
in the uses phrase of the class instruction. Each class from the list is
searched for a matching property or method, and then its superclasses
are searched upwards from the class in the same way; this process is
repeated for each of the classes, in the order specified in the list.

4. One of the allowed special words described in Special words and methods
(see page [[04) , such as this or version.

5. The short name of a known class or primitive type (in which case the
stub has no value, just a type).

« If the stub is an indexed reference, then its value and type will be deter-
mined by whichever of the following is first found:

1. The symbol naming the reference is an undimensioned local variable
or method argument within the current method, or a property in the
current class, which has type Rexx. In this case, the reference is to an
indexed string (see page B6) ; the expressions within the brackets must
be convertible to type Rexx, and the type of the result will be Rexx.

2. The symbol naming the reference is a dimensioned local variable or
method argument within the current method, or a property in the cur-
rent class. In this case, the reference is to an array (see page) , and the
expressions within the brackets must be convertible to whole numbers
allowed for array indexes. The type of the result will have the type of
the array, with dimensions reduced by the number of dimensions spec-
ified in the stub. For example, if the array foo was of type Baa[,,,] and
the stub referred to foo[1,2], then the result would be of type Baa[,]. It
would have been an error for the stub to have specified more than four
dimensions.

3. The symbol naming the reference is the name of a static or constant
property in a class listed in the uses phrase of the class instruction.
Each class from the list is searched in the same way as for symbols,
above. The reference may be to an indexed string or an array, as for prop-
erties in the current class.

4. The symbol naming the reference is the name of a primitive type or
the short name of a known class, and there are no expressions within
the brackets (just optional commas). In this case, the stub describes a
dimensioned type (see page P1)).

5. The symbol naming the reference is the name of a primitive type or is
the short name of a known class, and there are one or more expressions
within the brackets. In this case, the reference is to an array constructor
(see page) ; the expressions within the brackets must be convertible to
non-negative whole numbers allowed for array indexes, and the value

24Unless parenthesis omission is disallowed by an implementation option, such as options strictargs.
25Unless parenthesis omission is disallowed by an implementation option, such as options strictargs.

25

is an array of the specified type, dimensions, and size.

« If the stub is a sub-expression, then its value and type will be determined
by evaluating the expression (see page BY) within the parentheses.

« If the stub starts with the name of a package, then it will either describe a
qualified type (see page PU) or a qualified constructor (see page B1)) . Its
type will be same in either case, and if a constructor then its value will be
the value returned by the constructor.

If the stub is not followed by further segments, the final value and type of the
term is the value and type of the stub.

2.5.6 Continuation evaluation

Each segment of a term’s continuation is evaluated from left to right, according
to the type of the evaluation of the term so far (the continuation type) and the
syntax of the new segment:

« If the segment is a method call, then its value and type is the result of in-
voking the matching method in the class defining the continuation type (or
a superclass or subclass of that class), as described in Methods and Construc-
tors (see page P7]) . Note that method calls in term continuations cannot be
constructors.

« If the stub is an indexed reference, then it will refer to a property in the class
defining the continuation type (or a superclass of that class). That property
will either be an undimensioned NetRexx string (type Rexx) or a dimen-
sioned array. In either case, it is evaluated in the same way as an indexed
reference found in the stub, except that it is not necessarily in the current
class, cannot be an array constructor, and cannot result in a dimensioned
type.

« If the segment is a symbol, then it refers to either a property or a method
in the class defining the continuation type (or a superclass of that class).
The search for the property or method starts with the class defining the
continuation type. If a property name matches, it is used; if not, a method
of the same name and having no arguments (or only optional arguments)
will match. If neither property nor method is found, then the same search
is applied to each of the continuation class’s superclasses in turn, starting
with the class that it extends.

As a convenient special case, if the property or method is not found, then
if the segment is the final segment of the term and is the simple symbol
length and the continuation type is a single-dimensioned array, then the
segment evaluates to the size of the array. This will be a non-negative whole
number of an appropriate primitive type (or of type Rexx if there is no

appropriate type).

The final value and type of the term is the value and type determined by the
evaluation of the last segment of the continuation.

26Unless parenthesis omission is disallowed by an implementation option, such as options strictargs, in which case
it can only be a property.

26

2.5.7 Arrays in terms

If a partially-evaluated term results in a dimensioned array (see page @) , its
type is treated as type Object so that evaluation of the term can continue. For
example, in

ca=char[] "tosh"
say ca.toString()

the variable ca is an array of characters; in the expression on the second line the
method toString() of the class Object will be found. &

2.6 Methods and Constructors

Instructions in NetRexx are grouped into methods, which are named routines
that always belong to (are part of) a class.

Methods are invoked by being referenced in a term (see page £2) , which may be
part of an expression or be a clause in its own right (a method call instruction).
In either case, the syntax used for a method invocation is:

symbol ([expression[,expression]...])

The symbol, which must be non-numeric, is called the name of the method. It is
important to note that the name of the method must be followed immediately
by the ”(”, with no blank in between, or the construct will not be recognized
as a method call (a blank operator would be assumed at that point instead). The
expressions (separated by commas) between the parentheses are called the ar-
guments to the method. Each argument expression may include further method
calls. The argument expressions are evaluated in turn from left to right and the
resulting values are then passed to the method (the procedure for locating the
method is described below). The method then executes some algorithm (usu-
ally dependent on any arguments passed, though arguments are not manda-
tory) and will eventually return a value. This value is then included in the orig-
inal expression just as though the entire method reference had been replaced
by the name of a variable whose value is that returned data.

For example, the substr method is provided for strings of type Rexx and could
be used as:

c="abcdefghijk'

a=c.substr(3,7)

/* would set A to "cdefghi" */

Here, the value of the variable cis a string (of type Rexx). The substr (substring)
method of the Rexx class is then invoked, with arguments 3 and 7, on the value
referred to by c. That is, the the properties available to (the context of) the substr
method are the properties constructed from the literal string ‘abcdefghijk’. The

2 In the reference implementation, this would return an identifier for the object.

27

method returns the substring of the value, starting at the third character and of
length seven characters.

A method may have a variable number of arguments: only those required need
be specified. For example, ’"ABCDEF .substr(4) would return the string "DEF’,
as the substr method will assume that the remainder of the string is to be re-
turned if no length is provided.

Method invocations that take no arguments may omit the (empty) parentheses
in circumstances where this would not be ambiguous. See the section on Terms
(see page 22) for details.

Implementation minimum: At least 10 argument expressions should be al-
lowed in a method call.

2.6.1 Method call instructions

When a clause in a method consists of just a term, and the final part of the term
is a method invocation, the clause is a method call instruction:

symbol ([expression[,expression]...]);

The method is being called as a subroutine of the current method, and any re-
turned value is discarded. In this case (and in this case only), the method in-
voked need not return a value (that is, the return instruction that ends it need
not specify an expression).

A method call instruction that is the first instruction in a constructor (see below)
can only invoke the special constructors this and super.

2.6.2 Method resolution (search order)

Method resolution in NetRexx proceeds as follows:

« If the method invocation is the first part (stub) of a term, then:

1. The current class is searched for the method (see below for details of
searching).

2. If not found in the current class, then the superclasses of the current
class are searched, starting with the class that the current class extends.

3. If still not found, then the classes listed in the uses phrase of the class
instruction are searched for the method, which in this case must be a
static method (see page [/5) . Each class from the list is searched for the
method, and then its superclasses are searched upwards from the class;
this process is repeated for each of the classes, in the order specified in
the list.

28 A method call instruction is equivalent to the call instruction of other languages, except that no keyword is re-
quired.

28

4. If still not found, the method invocation must be a constructor (see
below) and so the method name, which may be qualified by a pack-
age name, should match the name of a primitive type or a known
class (type). The specified class is then searched for a constructor that
matches the method invocation.

« If the method invocation is not the first part of the term, then the evalua-
tion of the parts of the term to the left of the method invocation will have
resulted in a value (or just a type), which will have a known type (the con-
tinuation type). Then:

1. The class that defines the continuation type is searched for the method
(see below for details of searching).

2. If not found in that class, then the superclasses of that class are searched,
starting with the class that that class extends.

If the search did not find a method, an error is reported.
If the search did find a method, that is the method which is invoked, except
in one case:

« If the evaluation so far has resulted in a value (an object), then that
value may have a type which is a subclass of the continuation type. If,
within that subclass, there is a method that exactly overrides (see page
BJ) the method that was found in the search, then the method in the
subclass is invoked.

This case occurs when an object is earlier assigned to a variable of a type
which is a superclass of the type of the object. This type simplification hides
the real type of the object from the language processor, though it can be
determined when the program is executed.

Searching for a method in a class proceeds as follows:

1. Candidate methods in the class are selected. To be a candidate method:

+ the method must have the same name as the method invocation (inde-
pendent of the case (see page [[§) of the letters of the name)

+ the method must have the same number of arguments as the method
invocation (or more arguments, provided that the remainder are shown
as optional in the method definition)

« it must be possible to assign the result of each argument expression to
the type of the corresponding argument in the method definition (if
strict type checking is in effect, the types must match exactly).

2. If there are no candidate methods then the search is complete; the method
was not found.

3. If there is just one candidate method, that method is used; the search is
complete.

4. If there is more than one candidate method, the sum of the costs of the
conversions (see page BY) from the type of each argument expression to the
type of the corresponding argument defined for the method is computed
for each candidate method.

5. The costs of those candidates (if any) whose names match the method in-
vocation exactly, including in case, are compared; if one has a lower cost

29

than all others, that method is used and the search is complete.

6. The costs of all the candidates are compared; if one has a lower cost than
all others, that method is used and the search is complete.

7. If there remain two or more candidates with the same minimum cost, the
method invocation is ambiguous, and an error is reported.

Note: When a method that is not an exact match to a call is found in a class,
superclasses of that class are also searched for methods which may have a lower-
cost of conversion and the method with the lowest cost, hence the closest match,
is used to resolve the search.

The current method of method resolution has been chosen to maximize inter-
operability with Java-language programs.®

2.6.3 Method overriding

A method is said to exactly override a method in another class if

1. the method in the other class has the same name as the current method

2. the method in the other class is not private

3. the other class is a superclass of the current class, or is a class that the cur-
rent class implements (or is a superclass of one of those classes).

4. the number and type of the arguments of the method in the other class
exactly match the number and type of the arguments of the current method
(where subsets are also checked, if either method has optional arguments).

For example, the Rexx class includes a substr (see page [[55) method, which
takes from one to three strings of type Rexx. In the class:
class mystring extends Rexx

method substr(n=Rexx, length=Rexx)
return this.reverse.substr(n, length)

method substr(n=int, length=int)
return this.reverse.substr(Rexx n, Rexx length)

the first method exactly overrides the substr method in the Rexx class, but the
second does not, because the types of the arguments do not match.

A method that exactly overrides a method is assumed to be an extension of
the overridden method, to be used in the same way. For such a method, the
following rules apply:

« It must return a value of the same type® as the overridden method (or
none, if the overridden method returns none).

« It must be at least as visible as the overridden routine. For example, if the
overridden routine is public then it must also be public.

2This in contrast to all versions before 3.02, where this rule was: When a method is found in a class, superclasses of that
class are not searched for methods, even though a lower-cost method may exist in a superclass.. The latter was chosen to guard
the program optimally against changes in superclasses.

30observing what is stated in the next paragraph

30

o If the overridden method is static then it must also be static.
o If the overridden method is not static then it must not be static.

« If the underlying implementation checks exceptions (see page [[30) , only
those checked exceptions that are signalled by the overridden method may
be left uncaught in the current method.

2.6.4 Return Types

NetRexx allows covariant return types such as have been allowed in Java since
the version 1.5 release. Prior to Java 1.5, in order for a method to override or
implement a method from another class, the return type of the methods had
to be an exact match. Since the Java 1.5 release, methods which override a su-
perclass method or implement an interface class method are allowed to have
a return type which is a subclass of the return type of the method replaced or
implemented. An exact match is no longer required.

2.6.5 Constructor methods

As described above, methods are usually invoked in the context of an existing
value or type. A special kind of method, called a constructor method, is used to
actually create a value of a given type (an object).

Constructor methods always have the same short name as the class in which
they are found, and construct and return a value of the type defined by that
class (sometimes known as an instance of that class). If the class is part of a
package, then the constructor call may be qualified by the package name.

Example constructors:

File('Dan.yr.0Ogof’)
java.io.File(’'Speleogroup.letter’)
Rexx ('some words')
netrexx.lang.Rexx (1)

There will always be at least one constructor if values can be created for a class.
NetRexx will add a default public constructor that takes no arguments if no
constructors are provided, unless the components of the class are all static or
constant, or the class is an interface class.

All constructors follow the same rules as other methods, and in addition:

1. Constructor calls always include parentheses in the syntax, even if no ar-
guments are supplied. This distinguishes them from a reference to the type
of the same name.

2. Constructors must call a constructor of their superclass (the class they ex-
tend) before they carry out any initialization of their own. This is so any
initialization carried out by the superclass takes place, and at the appropri-
ate moment. Only after this call is complete can they make any reference
to the special words this or super (see page [[04) .

31

Therefore, the first instruction in a constructor must be either a call to
the superclass, using the special constructor super() (with optional ar-
guments), or a call to to another constructor in the same class, using the
special constructor this() (with optional arguments). In the latter case,
eventually a constructor that explicitly calls super() will be invoked and
the chain of local constructor calls ends.
As a convenience, NetRexx will add a default call to super(), with no ar-
guments, if the first instruction in a constructor is not a call to this() or
super().

3. The properties of a constructed value are initialized, in the order given in
the program, after the call to super() (whether implicit or explicit).

4. By definition, constructors create a value (object) whose type is defined by
the current class, and then return that value for use. Therefore, the returns
keyword on the method instruction (see page [/2) that introduces the con-
structor is optional (if given, the type specified must be that of the class).
Similarly, the only possible forms of the return instruction used in a con-
structor are either “return this;”, which returns the value that has just been
constructed, or just “return;”, in which case, the “this” is assumed (this
form will be assumed at the end of a method, as usual, if necessary).

Here is an example of a class with two constructors, showing the use of this()
and super(), and taking advantage of some of the assumptions:

class MyChars extends SomeClass

properties private
/* the data 'in' the object */
value=char|[]

/* construct the object from a char array */
method MyChars(array=char[])

/* initialize superclass */

super()

value=array -- save the value

/* construct the object from a String */
method MyChars(s=String)

/* convert to char[] and use the above x/
this(s.toCharArray())

Objects of type MyChars could then be created thus:
myvar=MyChars("From a string”)

or by using an argument that has type char[].

2.7 Type conversions

As described in the section on Types and classes (see page P0), all values that are
manipulated in NetRexx have an associated type. On occasion, a value involved

32

in some operation may have a different type than is needed, and in this case
conversion of a value from one type to another is necessary.

NetRexx considerably simplifies the task of programming, without losing ro-
bustness, by making many such conversions automatic. It will automatically
convert values providing that there is no loss of information caused by the au-
tomatic conversion (or if there is, an exception would be raised).

Conversions can also be made explicit by concatenating a type to a value (see
page BY) and in this case less robust conversions (sometimes known as casts)
may be effected. See below for details of the permitted automatic and explicit
conversions.

Almost all conversions carry some risk of failure, or have a performance cost,
and so it is expected that implementations will provide options to either report
costly conversions or require that programmers make all conversions explicit.
Such options might be recommended for certain critical programming tasks,
but are not necessary for general programming.

2.7.1 Permitted automatic conversions

In general, the semantics of a type is unknown, and so conversion (from a source
type to a target type) is only possible in the following cases:

« The target type and the source type are identical (the trivial case).

« The target type is a superclass of the source type, or is an interface class
implemented by the source type. This is called type simplification, and in
this case the value is not altered, no information is lost, and an explicit
conversion may be used later to revert the value to its original type.

» The source type has a dimension, and the target type is Object.

« The source type is null and the target type is not primitive.

« The target and source types have known semantics (that is, they are “well-
known” to the implementation) and the conversion can be effected without
loss of information (other than knowledge of the original type). These are
called well-known conversions.

Necessarily, the well-known conversions are implementation-dependent, in that
they depend on the standard classes for the implementation and on the primi-
tive types supported (if any). Equally, it is this automatic conversion between
strings and the primitive types of an implementation that offer the greatest sim-
plifications of NetRexx programming.

For example, if the implementation supported an int binary type (perhaps a 32-
bit integer) then this can safely be converted to a NetRexx string (of type Rexx).
Hence a value of type int can be added to a number which is a NetRexx string
(resulting in a NetRexx string) without concern over the difference in the types
of the two terms used in the operation.

Conversely, converting a long integer to a shorter one without checking for trun-
cation of significant digits could cause a loss of information and would not be

31In the reference implementation, options strictassign may be used to disallow automatic conversions.

33

permitted.

In the reference implementation, the semantics of each of the following types is known to
the language processor (the first four are all string types, and the remainder are known
as binary numbers):

netrexx.lang.Rexx - the NetRexx string class

java.lang.String - the Java string class

char - the Java primitive which represents a single character

char[] - an array of chars

boolean - a single-bit primitive

byte, short, int, long, - signed integer primitives (8, 16, 32, or 64 bits)
float, double - floating-point primitives (32 or 64 bits)

Under the rules described above, the following well-known conversions are permitted:

Rexx to binary number, char|[], String, or char

String to binary number, char[|, RExx, or char

char to binary number, char[|, String, or RExx

char[] to binary number, Rexx, String, or char

binary number to Rexx, String, char[], or char

binary number to binary number (if no loss of information can take place - no
sign, high order digits, decimal part, or exponent information would be lost)

Notes:

1.

Some of the conversions can cause a run-time error (exception), as when a string
represents a number that is too large for an int and a conversion to int is attempted,
or when a string that does not contain exactly one character is converted to a char.
The boolean primitive is treated as a binary number that may only take the values
0 or 1. A boolean may therefore be converted to any binary number type, as well
as any of the string (or char) types, as the character "0” or “1”. Similarly, any
binary number or string can be converted to boolean (and must have a value of 0
or 1 for the conversion to succeed).

The char type is a single-character string (it is not a number that represents the
encoding of the character).

2.7.2 Permitted explicit conversions

Explicit conversions are permitted for all permitted automatic conversions and,
in addition, when:

The target type is a subclass of the source type, or implements the source
type. This conversion will fail if the value being converted was not origi-
nally of the target type (or a subclass of the target type).

Both the source and target types are primitive and (depending on the im-
plementation) the conversion may fail or truncate information.

The target type is Rexx or a well-known string type (all values have an
explicit string representation).

34

2.7.3 Costs of conversions

All conversions are considered to have a cost, and, for permitted automatic con-
versions, these costs are used to select a method for execution when several pos-
sibilities arise, using the algorithm described in Methods and Constructors (see
pageB8) .

For permitted automatic conversions, the cost of a conversion from a source type
to a target type will range from zero through some arbitrary positive value, con-
strained by the following rules:

* The cost is zero only if the source and target types are the same, or if the
source type is null and the target type is not primitive.

« Conversions from a given primitive source type to different primitive target
types should have different costs. For example, conversion of an 8-bit num-
ber to a 64-bit number might cost more than conversion of a 8-bit number
to a 32-bit number.

« Conversions that may require the creation of a new object cost more than
those that can never require the creation of a new object.

+ Conversions that may fail (raise an exception) cost more than those that
may require the creation of an object but can never fail.

Within these constraints, exact costs are arbitrary, and (because they mostly in-
volve implementation-dependent primitive types) are necessarily implementation-
dependent. The intent is that the “best performance” method be selected when
there is a possibility of more than one.

2.8 Expressions and Operators

Many clauses can include expressions. Expressions in NetRexx are a general
mechanism for combining one or more data items in various ways to produce
a result, usually different from the original data. Expressions consist of one
or more terms (see page P2) , such as literal strings, symbols, method calls, or
sub-expressions, and zero or more operators that denote operations to be carried
out on terms. Most operators act on two terms, and there will be at least one
of these dyadic operators between every pair of terms. B There are also prefix
(monadic) operators, that act on the term that is immediately to the right of
the operator. There may be one or more prefix operators to the left of any term,
provided that adjacent prefix operators are different.

Evaluation of an expression is left to right, modified by parentheses and by op-
erator precedence (see page ff(J) in the usual ”algebraic” manner. Expressions
are wholly evaluated, except when an error occurs during evaluation.

As each term is used in an expression, it is evaluated as appropriate and its
value (and the type of that value) are determined.

The result of any operation is also a value, which may be a character string,

320ne operator, direct concatenation, is implied if two terms abut (see page Bg) .

35

TABLE 2: Concatenation operators

(blank) Concatenate terms with one blank in between.

Il Concatenate without an intervening blank.

(abuttal) Concatenate without an intervening blank.

a data object of some other type, or (in special circumstances) a binary repre-
sentation of a character or number. The type of the result is well-defined, and
depends on the types of any terms involved in an operation and the operation
carried out. Consequently, the result of evaluating any expression is a value
which has a known type.

Note that the NetRexx language imposes no restriction on the maximum size of
results, but there will usually be some practical limitation dependent upon the
amount of storage and other resources available during execution.

2.8.1 Operators

The operators in NetRexx are constructed from one or more operator charac-
ters (see page [[7)). Blanks (and comments) adjacent to operator characters have
no effect on the operator, and so the operators constructed from more than one
character may have embedded blanks and comments. In addition, blank charac-
ters, where they occur between tokens within expressions but are not adjacent
to another operator, also act as an operator. The operators may be subdivided
into five groups: concatenation, arithmetic, comparative, logical, and type oper-
ators. The first four groups work with terms whose type is “well-known” (that
is, strings, or known types that can be be converted to strings without informa-
tion loss). The operations in these groups are defined in terms of their opera-
tions on strings.

Concatenation

The concatenation operators are used to combine two strings to form one string
by appending the second string to the right-hand end of the first string. The
concatenation may occur with or without an intervening blank: Concatenation
without a blank may be forced by using the || operator, but it is useful to remem-
ber that when two terms are adjacent and are not separated by an operator, &
they will be concatenated in the same way. This is the abuttal operation. For
example, if the variable Total had the value ’'37.4’, then Total’%’ would eval-
uate to '37.4%’. Values that are not strings are first converted to strings before
concatenation. The concatenation operators are listed in table .

33This can occur when the terms are syntactically distinct (such as a literal string and a symbol).

36

TABLE 3: Arithmetic operators

+ Add

- Subtract

* Multiply

/ Divide

% Integer divide. Divide and return the integer part of the result.

// Remainder. Divide and return the remainder (this is not modulo, as the result
may be negative).

x* Power. Raise a number to a whole number power.

Prefix - Same as the subtraction: ”"0-number”.

Prefix + Same as the addition: ”0+number”.

Arithmetic

Character strings that are numbers (see page () may be combined using the
arithmetic operators listed in table [. The section on Numbers and Arithmetic (see
page [[1§) describes numeric precision, the format of valid numbers, and the
operation rules for arithmetic. Note that if an arithmetic result is shown in ex-
ponential notation, then it is likely that rounding has occurred.

In binary classes (see page p7]) , the arithmetic operators will use binary arith-
metic if both terms involved have values which are binary numbers. The section
on Binary values and operations (see page [[27) describes binary arithmetic.

Comparative

The comparative operators compare two terms and return the value "1’ if the re-
sult of the comparison is true, or "0” otherwise. Two sets of operators are defined:
the strict comparisons (listed in table f) and the normal comparisons (listed in
table). The strict comparative operators all have one of the characters defining
the operator doubled. The "==", and "\==" operators test for strict equality
or inequality between two strings. Two strings must be identical to be consid-
ered strictly equal. Similarly, the other strict comparative operators (such as
”>>" or "<<”) carry out a simple left-to-right character-by-character compar-
ison, with no padding of either of the strings being compared. If one string is
shorter than, and is a leading sub-string of, another then it is smaller (less than)
the other. Strict comparison operations are case sensitive, and the exact collat-
ing order may depend on the character set used for the implementation. = For
all the other comparative operators, if both the terms involved are numeric,
B3 a numeric comparison (in which leading zeros are ignored, etc.) is effected;
otherwise, both terms are treated as character strings. For this character string
comparison, leading and trailing blanks are ignored, and then the shorter string

34For example, in an ASCII or Unicode environment, the digits 0-9 are lower than the alphabetics, and lowercase al-
phabetics are higher than uppercase alphabetics. In an EBCDIC environment, lowercase alphabetics precede uppercase,
but the digits are higher than all the alphabetics.

%That is, if they can be compared numerically without error.

37

TABLE 4: Normal comparative operators

= Equal (numerically or when padded, efc.).

\= Not equal (inverse of =).
> Greater than.
< Less than.

><, <> Greater than or less than (same as "Not equal”).

>=,\< Greater than or equal to, not less than.

<=,\> Less than or equal to, not greater than.

TABLE 5: Strict comparative operators

== Strictly equal (identical).

\== Strictly not equal (inverse of ==).
>> Strictly greater than.
<< Strictly less than.

>>=,\<< Strictly greater than or equal to, strictly not less than.

<<=,\>> Strictly less than or equal to, strictly not greater than.

is padded with blanks on the right. The character comparison operation takes
place from left to right, and is not case sensitive (that is, “Yes” compares equal
to “yes”). As for strict comparisons, the exact collating order may depend on
the character set used for the implementation.

/A==

The equal and not equal operators ("=", ”==",”\=", and "\==") may be used
to compare two objects which are not strings for equality, if the implementation
allows them to be compared (usually they will need to be of the same type).
The strict operators test whether the two objects are in fact the same object,
and the normal operators may provide a more relaxed comparison, if available
to the implementation. ¥

In binary classes (see page p7) , all the comparative operators will use binary
arithmetic to effect the comparison if both terms involved have values which are
binary numbers. In this case, there is no distinction between the strict and the
normal comparative operators. The section on Binary values and operations (see
page [[27) describes the binary arithmetic used for comparisons.

Boolean

A character string is taken to have the value “false” if it is “0’, and “true” if it is
"1". The logical operators take one or two such values (values other than ’0” or
1" are not allowed) and return ‘0" or ‘1" as appropriate. The Boolean operators
are listed in table ff. In binary classes (see page p7) , the logical operators will

36Note that two distinct objects compared in this way may contain values (properties) that are identical, yet they will
not compare equal as they are not the same object.
57In the reference implementation, the equals method is used for normal comparisons. Where not provided by a type, this is

38

TABLE 6: Boolean operators

& And. Returns 1 if both terms are true.

| Inclusive or. Returns 1 if either term is true.

&& Exclusive or. Returns 1 if either (but not both) is true.

Prefix \ Logical not. Negates; 1 becomes 0 and vice versa.

act on all bits in the values if both terms involved have values which are boolean
or integers. The section on Binary values and operations (see page [[27) describes
this in more detail.

Type

Several of the operators already described can be used to carry out operations
related to types. Specifically:

« Any of the concatenation operators may be used for type concatenation,
which concatenates a type to a value. All three operators (blank, ”||”, and
abuttal) have the same effect, which is to convert (see page B2) ™ the value
to the type specified (if the conversion is not possible, an error is reported
or an exception is signalled). The type must be on the left-hand side of the
operator. Examples:

String "abc”
int (a+l)
long 1

Exception e
InputStream myfile

+ A type on the left hand side of an operator that could be a prefix (+, - or
\) type concatenation after the prefix operator is applied to the right-hand
operand, as though an explicit concatenation operator were placed before
the prefix operator.

For example:

x=int -y

means that -y is evaluated, and then the result is converted to int before
being assigned to x. & The “less than or equal” and the “greater than or
equal” operators (“<="and ”">=") may be used with a type on either side
of the operator, or on both sides. In this case, they test whether a value or
type is a subclass of, or is the same as, a type, or vice versa. Examples:

if i<=0bject then say 'I is an Object’
if String>=i then say 'I is a String’
if String<=0bject then say ’'String is an Object’

implemented by the Object class as a strict comparison.
38This is sometimes known as casting
39This could also have been written x=int (-y).

39

The precedence of these operators is not affected by their being used with types
as operands.

2.8.2 Numbers

The arithmetic operators above require that both terms involved be numbers;
similarly some of the comparative operators carry out a numeric comparison
if both terms are numbers. Numbers are introduced and defined in detail in
the section on Numbers and arithmetic (see page [18) . In summary, numbers are
character strings consisting of one or more decimal digits optionally prefixed by
a plus or minus sign, and optionally including a single period (”.”) which then
represents a decimal point. A number may also have a power of ten suffixed in
conventional exponential notation: an “E” (uppercase or lowercase) followed
by a plus or minus sign then followed by one or more decimal digits defining
the power of ten. Numbers may have leading blanks (before and/or after the
sign, if any) and may have trailing blanks. Blanks may not be embedded among
the digits of a number or in the exponential part. Examples:

T
'-17.9’'
'127.0650'
'73e+128'
"'+ 7.9E-5 '
"OOE+000’

Note that the sequence -17.9 (without quotes) in an expression is not simply a
number. It is a minus operator (which may be prefix minus if there is no term
to the left of it) followed by a positive number. The result of the operation will
be a number. A whole number (see page [26) in NetRexx is a number that has a
zero (or no) decimal part.

Implementation minimum: All implementations must support 9-digit arith-
metic. In unavoidable cases this may be limited to integers only, and in this case
the divide operator (”/”) must not be supported. If exponents are supported in
an implementation, then they must be supported for exponents whose absolute
value is at least as large as the largest number that can be expressed as an exact
integer in default precision, i.e., 999999999.

2.8.3 Parentheses and operator precedence

Expression evaluation is from left to right; this is modified by parentheses and
by operator precedence:

« When parentheses are encountered, other than those that identify method
calls (see page P7]) , the entire sub-expression delimited by the parentheses
is evaluated immediately when the term is required.

» When the sequence

term, operator, term, operator, term;

40

TABLE 7: Operator precedence

Prefix operators +-\

Power operator x*

Multiplication and division * and /

Addition and subtraction + -

Concatenation (blank) || (abuttal)
Comparative operators ===><<=>=<<\>> ete
And &

Or, exclusive or | &&

is encountered, and operator, has a higher precedence than operator;, then
the operation (term, operator, term;) is evaluated first. The same rule is
applied repeatedly as necessary. Note, however, that individual terms are
evaluated from left to right in the expression (that is, as soon as they are
encountered). It is only the order of operations that is affected by the prece-
dence rules.

For example, ”*” (multiply) has a higher precedence than ”+” (add), so 3+2*5
will evaluate to 13 (rather than the 25 that would result if strict left to right eval-
uation occurred). To force the addition to be performed before the multiplica-
tion the expression would be written (3+2)*5, where the first three tokens have
been formed into a sub-expression by the addition of parentheses. The order of
precedence of the operators is (highest at the top) is listed in table [1.

If, for example, the symbol a is a variable whose value is ’3’, and day is a variable
with the value ‘"Monday’, then:

a+5 = '8'

a-4x2 = '-5'

a/2 = '1.5"'

a\%2 = '1'

0.5%%2 = '0.25"

(a+1)>7 = '0' /* that i1s, False x/
S = '1' /* that is, True =x/
'l = '0' /* that is, False x/
N\ =" = '1' /x that is, True x/
(a+1)*3=12 = '1' /*x that is, True x/
'077'>"'11" = '1' /* that is, True x/
'077'>>'11" = '0' /* that 1s, False x/
"abc'>>'ab! = '] /* that 1s, True x/
"If it is' day == 'If it is Monday'

day.substr(2,3) == ‘ond'

"I'day'!"’ == 'I!Monday!'

Note: The NetRexx order of precedence usually causes no difficulty, as it is the
same as in conventional algebra and other computer languages. There are two
differences from some common notations; the prefix minus operator always has
a higher priority than the power operator, and power operators (like other op-

41

erators) are evaluated left-to-right. Thus

-3%x%x2 == 9 /* not -9 %/
-(2+1)%x%2 == 9 /* not -9 %/
2%*2%%3 == 64 /* not 256 =%/

These rules were found to match the expectations of the majority of users when
the Rexx language was first designed, and NetRexx follows the same rules.

2.9 Clauses and Instructions

Clauses (see page [[3) are recognized, and can usefully be classified, in the fol-
lowing order:

Null clauses A clause that is empty or comprises only blanks, comments, and
continuations is a null clause and is completely ignored by NetRexx (except
that if it includes a comment it will be traced, if reached during execution).

Note: A null clause is not an instruction, so (for example) putting an ex-
tra semicolon after the then or else in an if instruction is not equivalent
to putting a dummy instruction (as it would be in C or PL/I). The nop in-
struction is provided for this purpose.

Assignments Single clauses within a class and of the form term=expression; are

instructions known as assignments (see page f3) . An assignment gives a
variable, identified by the term, a type or a new value.
In just one context, where property assignments are expected (before the
tirst method in a class), the =" and the expression may be omitted; in this
case, the term (and hence the entire clause) will always be a simple non-
numeric symbol which names the property

Method call instructions A method call instruction (see page P§) is a clause
within a method that comprises a single term that is, or ends in, a method
invocation.

Keyword instructions A keyword instruction consists of one or more clauses, the
tirst of which starts with a non-numeric symbol which is not the name of
a variable or property in the current class (if any) and is immediately fol-
lowed by a blank, a semicolon (which may be implied by the end of a line),
a literal string, or an operator (other than ”=", which would imply an as-
signment). This symbol, the keyword, identifies the instruction.
Keyword instructions control the external interfaces, the flow of control,
and so on. Some keyword instructions (see page pl]) (do, if, loop, or
select) can include nested instructions.

42

210 Assignments and Variables

A wvariable is a named item whose value may be changed during the course of
execution of a NetRexx program. The process of changing the value of a variable
is called assigning a new value to it.

Each variable has an associated type, which cannot change during the execution
of a program; therefore, the values assigned to a given variable must always
have a type that can safely be assigned to that variable.

Variables may be assigned a new value by the method or parse instructions, but
the most common way of changing the value of a variable is by using an assign-
ment instruction. Any clause within a class and of the form:

assignment;
where assignment is:

term=expression

is taken to be an assignment instruction. The result of the expression becomes the
new value of the variable named by the term to the left of the equals sign. When
the term is simply a symbol, this is called the name of the variable. Example:

/* Next line gives FRED the value 'Frederic' */
fred='Frederic'

The symbol naming the variable cannot begin with a digit (0-9).

Within a NetRexx program, variable names are not case-sensitive (for exam-
ple, the names fred, Fred, and FRED refer to the same variable). Where public
names are exposed (for example, the names of properties, classes, and meth-
ods, and in cross-reference listings) the case used for the name will be that used
when the name was first introduced (”first” is determined statically by position
in a program rather than dynamically).

Similarly, the type of a NetRexx variable is determined by the type of the value
of the expression that is first assigned to it. & For subsequent assignments, it is
an error to assign a value to a variable with a type mismatch unless the language
processor can determine that the value can be assigned safely to the type of the
variable.

In practice, this means that the types must match exactly, be a simplification, or
both be “well-known” types such as Rexx, String, int, etc., for which safe con-
versions are defined. The possibilities are described in the section on Conversions

(see page B2) . B

4Owithout this restriction on the first character of a variable name, it would be possible to redefine a number, in that
for example the assignment “3=4;” would give a variable called “3” the value "4’.

41Since NetRexx infers the type of a variable from usage, substantial programs can be written without introducing
explicit type declarations, although these are allowed.

“Implementations may provide for a stricter rule for assignment (where the types must be identical), controlled by
the options instruction.

43

For example, if there are types (classes) called ibm.util.hex, RunKnown, and
Window, then:

hexy=ibm.util.hex(3) -- 'hexy' has type 'ibm.util.hex'
rk=RunKnown() -- 'rk' has type 'RunKnown'
fred=Window(10, 20) -- 'fred' has type 'Window'
s="Los Lagos" -- 's' has type Rexx

j=5 -- 'j' has type Rexx

The first three examples invoke the constructor method for the type to construct
a value (an object). A constructor method always has the same name as the class
to which it belongs, and returns a new value of that type. Constructor methods
are described in detail in Methods and Constructors (see page 27) .

The last two examples above illustrate that, by default, the types of literal strings
and numbers are NetRexx strings (type Rexx) and so variables tend to be of type
Rexx. This simplifies the language and makes it easy to learn, as many useful
programs can be written solely using the powerful Rexx type. Potentially more
efficient (though less human-oriented) primitive or built-in types for literals
will be used in binary classes (see page b7). If the examples above were in a bi-
nary class, then, in the reference implementation, the types of s and j would have been
java.lang.String and int respectively.

A variable may be introduced (”declared”) without giving it an initial value by
simply assigning a type to it:

i=int

r=Rexx

f=java.lo.File

Here, the expression to the right of the ”=" simply evaluates to a type with no
value.

2.10.1 The use and scope of variables

NetRexx variables all follow the same rules of assignment, but are used in dif-
ferent contexts. These are:

Properties Variables which name the values (the data) owned by an object of

the type defined by the class are called properties. When an object is con-
structed by the class, its properties are created and are initialized to either
a default value (null or, for variables of primitive type, an implementation-
defined value, typically 0) or to a value provided by the programmer.
The attributes of properties can be changed by the properties instruction
(see page BY). For example, properties may also be constant, which means
that they are initialized when the class is first loaded and do not change
thereafter.

Method arguments When a method is invoked, arguments may be passed to it.
These method arquments are assigned to the variables named on the method
instruction (see page /7)) that introduces the method.

Local variables Variables that are known only within a method are called local
variables; each time a method is invoked a distinct set of local variables is

44

available. Local variables are normally given an initial value by the pro-
grammer. If they are not, they are initialized to a default value (null or, for
variables of primitive type, an implementation-defined value, typically 0).

In order for types to be determined and type-checking to be possible at “compile-
time”, and easily determined by inspection, the use and type of every variable
is determined by its position in the program, not by the order in which assign-
ments are executed. That is, variable typing is static.

The visibility of a variable depends on its use. Properties are visible to all meth-
ods in a class; method arguments and local variables are only visible within the
method in which they appear. In particular:

+ Within a class, properties have unique names (they cannot be overridden
by method arguments or by local variables within methods); this avoids
error-prone ambiguity.

+ Within a method, a method argument acts like a local variable (that is, it
is in the same name-space as local variables, and can be assigned new val-
ues); it can be considered to be a local variable that is assigned a value just
before the body of the method is executed. There cannot be both a method
argument and a local variable in a method with the same name.

+ Within methods, variables can take only one type, the type assigned to
them when first encountered in the method (in a strict “physical” sense,
that is, as parsed from top to bottom of the program and from left to right
on each line). Since methods tend to be small, there is no local scoping of
variables inside the constructs within a method. &

Thus, in this example:
method iszero(x)
if x=0 then qualifier='is zero'
else qualifier='is not zero'
say 'The argument' qualifier'.'

the variable qualifier is known throughout the method and hence has a
known type and value when the say instruction is executed.

To summarize: a symbol that names a variable in the current class either refers
to a property (and in any use of it within the class refers to that property), or
it refers to a variable that is unique within a method (and any use of the name
within that method refers to the same variable).

Note: A variable is just a name, or “handle” for a value. It is possible for more
than one variable to refer to the same value, as in the program:

first="'A string'
second=first

Here, both variables refer to the same value. If that value is changeable then a
change to the value referred to by one of the variable names would also be seen
if the value is referred to by the other. For example, sub-values of a NetRexx

43Unlike the block scoping of PL/I, C, or Java.

45

string can be changed, using Indexed references (see page) , so a change to a
sub-value of first would also be seen in an identical indexed reference to second.

2.10.2 Terms on the left of assignments

In an assignment instruction, the ferm to the left of the equals sign is most com-
monly a simple non-numeric symbol, which always names a variable in the cur-
rent class. The other possibilities, as seen in the example below, are:

1. The term is an indexed reference (see page ff) , to an existing variable that
refers to a string of type Rexx or an array (see page fi§) . The variable may
be in the current class, or be a property in a class named in the uses phrase
of the class instruction for the current class.

2. The term is a compound term (see page P2) that ultimately refers to a prop-
erty (see above) in some class (which may be the current class). This prop-
erty cannot be a constant.

Examples:

r=Rexx "'

r['foo']="7" -- indexed string assignment
s=String[3]

s[0]="test’ -- array assignment
Sample.value=1 -- property assignment
this.value=1 -- property assignment
super.value=1 -- property assignment

The last two examples show assignments to a property in the current class or in
a superclass of the current class, respectively. Note that references to properties
in other classes must alway be qualified in some way (for example, by the prefix
super.). The use of the prefix this. for properties in the current class is optional.

2.11 Indexed strings and Arrays

Any NetRexx string (that is, a value of type Rexx), has the ability to have sub-
values, values (also of type Rexx) which are associated with the original string
and are indexed by an index string which identifies the sub-value. Any string
with such sub-values is known as an indexed string.

The sub-values of a NetRexx string are accessed using indexed references, where
the name of a variable of type Rexx is followed immediately by square brackets
enclosing one or more expressions separated by commas: &

#The notations ' [’ and ']’ indicate square brackets appearing in the NetRexx program.

46

r

symbol'[' [expression[, expression]...]’']

It is important to note that the symbol that names the variable must be followed
immediately by the ”[”, with no blank in between, or the construct will not
be recognized as an indexed reference. The expressions (separated by commas)
between the brackets are called the indexes to the string. These index expressions
are evaluated in turn from left to right, and each must evaluate to a value is of
type Rexx or that can be converted to type Rexx.

The resulting index strings are taken “as-is” - that is, they must match exactly in
content, case, and length for a reference to find a previously-set item. They may
have any length (including the null string) and value (they are not constrained
to be just those strings which are numbers, for example).

If a reference does not find a sub-value, then a copy of the non-indexed value of
the variable is used. Example:

surname="Unknown' -- default value

surname['Fred']='Bloggs'

surname['Davy']='Jones'

try="'Fred’

say surname[try] surname['Bert']

would say “Bloggs Unknown”.

When multiple indexes are used, they indicate accessing a hierarchy of strings.
A single NetRexx string has a single set of indexes and subvalues associated with
it. The sub-values, however, are also NetRexx strings, and so may in turn have
indexes and sub-values. When more than one index is specified in an indexed
reference, the indexes are applied in turn from left to right to each retrieved
sub-value.

For example, in the sequence:

X=I?I

x['foo", 'bar']='0K'
say x['foo', 'bar']
y=x["'foo"]

say y['bar']

both say instructions would display the string “OK”. Indexed strings may be
used to set up “associative arrays”, or dictionaries, in which the subscript is not
necessarily numeric, and thus offer great scope for the creative programmer. A
useful application is to set up a variable in which the subscripts are taken from
the value of one or more variables, so effecting a form of associative (content
addressable) memory. Notes:

1. A variable of type Rexx must have been assigned a value before indexing
is used on it. This is the value that is used as the default value whenever
an indexed reference finds no sub-value.

2. The indexes, and hence the sub-values, of a Rexx object can be retrieved in
turn using the over (see page pY) keyword of the loop instruction.

47

3. The exists method (see page [[47) of the Rexx class may be used to test
whether an indexed reference has an explicitly-set value.

4. Assigning null to an indexed reference (for example, the assignment
switch[7]=null;) drops the sub-value; until set to a new value, any refer-
ence to the sub-value (including use of the exists method) will return the
same result as when it had never been set.

2.11.1 Arrays

In addition to indexed strings, NetRexx also includes the concept of fixed-size
arrays, which may be used for indexing values of any type (including strings).

Arrays are used with the same syntax and in the same manner as indexed
strings, but with important differences that allow for compact implementations
and access to equivalent data structures constructed using other programming
languages:

1. The indexes for arrays must be whole numbers that are zero or positive.
There will usually be an implementation restriction on the maximum value
of the index (typically 999999999 or higher).

2. The elements of an array are considered to be ordered; the first element has
index 0, the second 1, and so on.

3. An array is of fixed size; it must be constructed before use.

4. Variables that are assigned arrays can only be assigned arrays (of the same
dimension, see below) in the future. That is, being an array changes the
type of a value; it becomes a dimensioned type (see page 21)) .

Array references use the NetRexx indexed reference syntax defined above. The
same syntax is used for constructing arrays, except that the symbol before the
left bracket describes a type (and hence may be qualified by a package name).
The expression or expressions between the brackets indicate the size of the array
in each dimension, and must be a positive whole number or zero:

arg=String[4] -- makes an array for four Strings
arg=java.lo.File[4] -- makes an array for four Files
i=1nt[3] -- makes an array for three 'int's

(Another way of describing this is that array constructors look just like other
object constructors, except that brackets are used instead of parentheses.)

Once an array has been constructed, its elements can be referred to using brack-
ets and expressions, as before:

i[2]=3 -- sets the '2'-indexed value of 'i'

j=1[2] -- sets 'j' to the '2'-indexed value of 'i'

Regular multiple-dimensioned arrays may be constructed and referenced by us-
ing multiple expressions within the brackets:

i=int[2,3] -- makes a 2x3 array of 'int' type objects
i[1,2]=3 -- sets the '1,2'-indexed value of 'i'
j=1[1,2] -- sets 'j' to the '1l,2'-indexed value of 'i'

48

As with indexed strings, when multiple indexes are used, they indicate access-
ing a hierarchy of arrays (the underlying model is therefore of a hierarchy of
single-dimensioned arrays). When more than one index is specified in an in-
dexed reference to an array, the indexes are applied in turn from left to right to
each array.

As described in the section on Types (see page 20) , the type of a variable that
refers to an array can be set (declared) by assignment of the type with array
notation that indicates the dimension of an array without any sizes:

k=int[] -- one-dimensional array of 'int' objects
m=float[,,] -- 3-dimensional array of 'float' objects

The same syntax is also used when describing an array type in the arguments
of a method instruction or when converting types. For example, after:

gg=char[] "Horse"

the variable gg has as its value an array of type char| | containing the five char-
actersH, o, 1, s, and e.

2.11.2 Array initializers

An array initializer is a simple term which is recognized if it does not immediately
follow (abut) a symbol, and has the form B

14

"["expression[,expression]..."]

An array initializer therefore comprises a list of one or more expressions, sep-
arated by commas, within brackets. When an array initializer is evaluated, the
expressions are evaluated in turn from left to right, and all must result in a value.
An array is then constructed, with a number of elements equal to the number
of expressions in the list, with each element initialized by being assigned the
result of the corresponding expression.

The type of the array is derived by adding one dimension to the type of the result
of the first expression in the list, where the type of that expression is determined
using the same rules as are used to select the type of a variable when it is first
assigned a value(see page f3). All the other expressions in the list must have
types that could be assigned to the chosen type without error.

For example, in

varl=['aa', 'bb', 'cc']

var2=[char 'a', 'b', 'c']

var3=[String 'a', 'bb', 'c']

var4=[1, 2, 3, 4, 5, 6]

vars=| [1)2] ’ [3,4]]

the types of the variables would be Rexx[], char[], String[], Rexx[], and
Rexx[,] respectively. In a binary class in the reference implementation, the
types would be String|[|, char[], String|], int[], and int[,].

45The notations ' [’ and ']’ indicate square brackets appearing in the NetRexx program.

49

Array initializers are most useful for initializing properties and variables, but
like other simple terms, they may start a compound term.

So, for example
say [1,1,1,1].length
would display 4. Note that an array of length zero cannot be constructed with

an array initializer, as its type would be undefined. An explicitly typed array
constructor (for example, int[0]) must be used.

50

Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a key-
word that identifies the instruction. Some keyword instructions affect the flow
of control; the remainder just provide services to the programmer. Some key-
word instructions (do, if, loop, or select) can include nested instructions. Ap-
pendix A (see page [[6§) includes an example of a NetRexx program using many
of the instructions available. As can be deduced from the syntax rules described
earlier, a keyword instruction is recognized only if its keyword is the first token
in a clause, and if the second token is not an ”=" character (implying an as-
signment). It would also not be recognized if the second token started with ”(”,
”[”, or ”.” (implying that the first token starts a term). Further, if a current lo-
cal variable, method argument, or property has the same name as a keyword
then the keyword will not be recognized. This important rule allows NetRexx
to be extended with new keywords in the future without invalidating existing
programs.

Thus, for example, this sequence in a program with no say variable:

say 'Hello'
say('1")
say=3

say 'Hello'

would be a say instruction, a call to some say method, an assignment to a say
variable, and an error. In NetRexx, therefore, keywords are not reserved; they
may be used as the names of variables (though this is not recommended, where
known in advance). Certain other keywords, known as sub-keywords, may be
known within the clauses of individual instructions - for example, the sym-
bols to and while in the loop instruction. Again, these are not reserved; if they
had been used as names of variables, they would not be recognized as sub-
keywords. Blanks adjacent to keywords have no effect other than that of sepa-
rating the keyword from the subsequent token. For example, this applies to the
blanks next to the sub-keyword while in

loop while a=3
Here at least one blank was required to separate the symbols forming the key-

words and the variable name, a. However the blank following the while is not
necessary in

loop while 'Me'=a

though it does aid readability.

51

3.1 Annotation instruction

An annotation® starts with an @ (commercial at sign) and is passed through
unchanged® To interpret a program with an annotation is an error.

Example:

/* standard annotations like @Override and @Deprecated are */
/* used, as are some custom ones */
/* (those need to be compiled first to be used) */
options binary

@Author(name="Class Author")

class AnnotateTest

properties private unused

propz

a = ArrayList()

test = TreeMap()

@SuppressWarnings(“unchecked")
method main(args=String[]) static
say 'hello annotations'
t=AnnotateTest()
t.old()

@0override
method toString() returns String
return 'Annotations’

@Deprecated
method old() /*x a comment with an @ in i1t */
say 'do no use anymore'

@Author(name "Jane Doe")

@Author(name "John Doe")
method repeating()

say 'repeating annotations'

@Author(name = "Fifi the Cat", date = "2016-01-01")
method parameters()
say 'parameters are possible, but all on one line'

4The Annotation instruction is not part of the original NetRexx language but is added due to the fact that Java
programs sometimes require the use of annotations.

4 dependent on the setting of option -annotations, which is the default. When option -noannotations is in effect,
no annotations are passed through. In this case, no @SuppressWarnings(“unchecked”) annotations are generated on
methods, which might lead to (harmless) javac warnings.

52

3.2 Address instruction

address [environment] [[expression]] [with fragment]
where fragment is

input [stem stem]
[stxeam stream]
output [APPEND|REPLACE] [stem stem]
[stxeam stream]
exror [APPEND|REPLACE] [stem stem]
[stxream stream]

where environment is a native executable or script on the path,
stem is an indexed string as described below
and stream is a valid filename.

The address instruction allows easy interaction with external programs such as
Operating System shells, or any program that reads input from standard input.
Environment represents an external command with expression being commands
to be executed by the environment.

The keyword address temporarily or permanently changes the destination of
commands. Commands are strings sent to an external environment. You can
send commands by specifying clauses consisting of only an expression or by
using the Address instruction.

To send a single command to a specified environment, code an environment, a
literal string or a single symbol, which is taken to be a constant, followed by an
expression.

The environment name is the name of an external procedure or process that can
process commands.

The expression is evaluated to produce a character string value, and this string
is routed to the environment to be processed as a command.

After execution of the command, environment is set back to its original state.
The default environment is SYSTEM, which is the shell on most operating systems.
Specifying address with only an environment changes the default environment.

After execution, the most recent return code is in the variable RC.

Any expression which is not intercepted by the translator as a NetRexx clause,
is sent to the address environment. Without with-fragment, the environment
sends the expression to STDIN of the external process or procedure for execu-
tion, any output received on STDOUT is printed on the console.

I/O can be redirected when submitting commands to an external environment.
The submitted command’s input stream can be taken from an existing stream
or from a set of compound variables with a common stem. In the latter case

53

(that is, when a stem is specified as the source for the commands input stream)
whole number tails are used to order input for presentation to the submitted
command.

Stem[0] must contain a whole number indicating the number of compound
variables to be presented, and stem[1] through stem[n] (where n=stem[0]) are
the compound variables to be presented to the submitted command.

Similarly, the submitted command’s output and error stream can be directed
to a stream, or to a set of compound variables with a given stem. In the latter
case (i.e., when a stem is specified as the destination) compound variables will
be created to hold the standard output, using whole number tails as described
above.

Output redirection can specify a REPLACE or APPEND option, which controls
positioning prior to the command’s execution. REPLACE is the default.

Specifying one of INPUT, OUTPUT or ERROR subkeywords more than once is
an error. Specifying a with fragment without expression, permanently sets I/O
redirection for subsequent ‘addressed” expressions.

Address processing can be switched off by the noaddress option.
Example:

'echo "Hello world"'
say RC
address bash 'echo "Hello world"'

address cat
'"Hello world'

address 'bash'
'echo "Hello world"'

exitcode=4
‘exit '||exitcode
say RC

The program greets the world 4 times, and shows usage of special variable RC.
Example with redirection:

/* rexx address capability x*/
outstem=""

address cmd with output stem outstem
"dir'

loop 1=1 to outstem[0]
say outstem[1i]
end

say 'the number of elements is:' outstem[0]

54

3.3 Class instruction

class name [visibility] [modifier] [binaxry] [deprecated]
[extends classname]
[uses useslist]
[implements interfacelist];

where visibility is one of:

private
public
shared

and modifier is one of:

abstract
adapter
final
intexface

and useslist and interfacelist are lists of one or more classnames,
separated by commas.

The class instruction is used to introduce a class, as described in the sections
Types and Classes (see page PU) and Program structure (see page P§) , and define
its attributes. The class must be given a name, which must be different from the
name of any other classes in the program. The name, which must be a non-
numeric symbol, is known as the short name of the class.

A classname can be either the short name of a class (if that is unambiguous in
the context in which it is used), or the qualified name of the class - the name
of the class prefixed by a package name and a period, as described under the
package instruction (see page B3).

The body of the class consists of all clauses following the class instruction (if
any) until the next class instruction or the end of the program.

The visibility, modifier, and binary keywords, and the extends, uses, and implements
phrases, may appear in any order.

3.3.1 Visibility

Classes may be public, private, or shared:

* A public class is visible to (that is, may be used by) all other classes.
« A private class is visible only within same program and to classes in the
same package (see page B3 .
55

* A shared class is also visible only within same program and to classes in the
same package.

A program may have only one public class, and if no class is marked public then
the first is assumed to be public (unless it is explicitly marked private).

3.3.2 Modifier

Most classes are collections of data (properties) and the procedures that can
act on that data (methods); they completely implement a datatype (type), and
are permitted to be subclassed. These are called standard classes. The modifier
keywords indicate that the class is not a standard class - it is special in some
way. Only one of the following modifier keywords is allowed:

abstract An abstract class does not completely implement a datatype; one or
more of the methods that it defines (or which it inherits from classes it
extends or implements) is abstract - that is, the name of the method and
the types of its arguments are defined, but no instructions to implement
the method are provided.
Since some methods are not provided, an object cannot be constructed from
an abstract class. Instead, the class must be extended and any missing meth-
ods provided. Such a subclass can then be used to construct an object.
Abstract classes are useful where many subclasses can share common data
or methods, but each will have some unique attribute or attributes (data
and/or methods). For example, some set of geometric objects might share
dimensions in X and Y, yet need unique methods for calculating the area
of the object.

adapter An adapter class is a class that is guaranteed to implement all unim-
plemented abstract methods of its superclasses and interface classes that it
inherits or lists as implemented on the class instruction.
If any unimplemented methods are found, they will be automatically gen-
erated by the language processor. Methods generated in this way will have
the same visibility and signature as the abstract method they implement,
and if a return value is expected then a default value is returned (as for
the initial value of variables of the same type: that is, null or, for values of
primitive type, an implementation-defined value, typically 0). Other than
possibly returning a value, these methods are empty; that is, they have no
side-effects.
An adapter class provides a concrete representation of its superclasses and
the interface classes it implements. As such, it is especially useful for imple-
menting event handlers and the like, where only a small number of event-
handling methods are needed but many more might be specified in the
interface class that describes the event model. &

48The shared keyword on the class instruction means exactly the same as the keyword private, and is accepted for
consistency with the other meanings of shared.
“For example, see the ”Scribble” sample in the NetRexx package.

56

An adapter class cannot have any abstract methods.

final A final class is considered to be complete; it cannot be subclassed (ex-
tended), and all its methods are considered complete.

interface Aninterface classis an abstract class that contains only abstract method
definitions and/or constants. That is, it defines neither instructions that im-
plement methods nor modifiable properties, and hence cannot be used to
construct an object.
Interface classes are used by classes that claim to implement them (see the
implements keyword, described below). The difference between abstract
and interface classes is that the former may have methods which are not
abstract, and hence can only be subclassed (extended), whereas the latter
are wholly abstract and may only be implemented.

3.3.3 Binary

The keyword binary indicates that the class is a binary class. In binary classes,
literal strings and numeric symbols are assigned native string or binary (primi-
tive) types, rather than NetRexx types, and native binary operations are used to
implement operators where possible. When binary is not in effect (the default),
terms in expressions are converted to NetRexx types before use by operators.
The section Binary values and operations (see page [[27) describes the implica-
tions of binary classes in detail.

Individual methods in a class which is not binary can be made into binary meth-
ods using the binary keyword on the method instruction (see page[/2) .

3.3.4 Deprecated

The keyword deprecated indicates that the class is deprecated, which implies that
a better alternative is available and documented. A compiler can use this infor-
mation to warn of out-of-date or other use that is not recommended.

3.3.5 Extends

Classes form a hierarchy, with all classes (except the top of the tree, the Object
Bl class) being a subclass of some other class. The extends keyword identifies the
classname of the immediate superclass of the new class - that is, the class imme-
diately above it in the hierarchy. If no extends phrase is given, the superclass is
assumed to be Object (or null, in the case where the current class is Object).

50This modifier is provided for consistency with other languages, and may allow compilers to improve the perfor-
mance of classes that refer to the final class. In many cases it will reduce the reusability of the class, and hence should
be avoided.

511n the reference implementation, java.lang.Object.

57

3.3.6 Uses

The uses keyword introduces a list of the names of one or more classes that will
be used as a source of constant (or static) properties and/or methods.

When a term (see page 7)) starts with a symbol, method call, or indexed refer-
ence that is not known in the current context, each class in the useslist and its
superclasses are searched (in the order specified in the useslist) for a constant or
static method or property that matches the item. If found, the method or prop-
erty is used just as though explicitly qualified by the name of the class in which
it was found.

The uses mechanism affects only the syntax of terms in the current class; it is
not inherited by subclasses of the current class.

3.3.7 Implements

The implements keyword introduces a list of the names of one or more interface
classes (see above). These interface classes are then known to (inherited by)
the current class, in the order specified in the interfacelist. Their methods (which
are all abstract) and constant properties act as though part of the current class,
unless they are overridden (hidden) by a method or constant of the same name
in the current class.

If the current class is not an interface class then it must implement (provide
non-abstract methods for) all the methods inherited from the interface classes
in the implements list.

Interface classes, therefore, can be used to:

1. Define a common set of methods (possibly with associated constants) that
will be implemented by other classes.

2. Conveniently package collections of constants for use by other classes.

The implements list may not include the superclass of the current class.

3.4 Do instruction

do [label name] [protect term] [binary];
instructionlist
[catch [vare =] exception;
instructionlist]...
[finally[;]
instructionlist]
end [name];

where name is a non-numeric symbol

58

and instructionlist is zero or more instructions

The do instruction is used to group instructions together for execution; these are
executed once. The group may optionally be given a label, and may protect an
object while the instructions in the group are executed; exceptional conditions
can be handled with catch and finally.

The most common use of do is simply for treating a number of instructions as
group.

Example:
/* The two instructions between DO and END will both x/
/* be executed if A has the value 3. *x/
if a=3 then do

a=a+2

say 'Smile!’
end

Here, only the first instructionlist is used. This forms the body of the group.

The instructions in the instructionlists may be any assignment, method call, or
keyword instruction, including any of the more complex constructions such as
loop, if, select, and the do instruction itself.

3.4.1 Label phrase

If 1abel is used to specify a name for the group, then a leave which specifies
that name may be used to leave the group, and the end that ends the group may
optionally specify the name of the group for additional checking.

Example:

do label sticky
x=ask
if x="quit' then leave sticky
say 'x was' Xx

end sticky

3.4.2 Protect phrase

If protect is given it must be followed by a term that evaluates to a value that
is not just a type and is not of a primitive type; while the do construct is being
executed, the value (object) is protected - that is, all the instructions in the do
construct have exclusive access to the object.

Both label and protect may be specified, in any order, if required.

59

3.4.3 Exceptions in do groups

Exceptions that are raised by the instructions within a do group may be caught
using one or more catch clauses that name the exception that they will catch.
When an exception is caught, the exception object that holds the details of the
exception may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will al-
ways be executed at the end of the group, even if an exception is raised (whether
caught or not).

The Exceptions section (see page [[30) has details and examples of catch and
finally.

3.4.4 Binary

A group of one or more statements ina do binary group will follow the seman-
tics of binary statements in binary classes or methods; the scope is limited to the
do binary group.

3.5 Exit instruction

exit [expression];

exit is used to unconditionally leave a program, and optionally return a result
to the caller. The entire program is terminated immediately.

If an expression is given, it is evaluated and the result of the evaluation is then
passed back to the caller in an implementation-dependent manner when the
program terminates. Typically this value is expected to be a small whole num-
ber; most implementations will accept values in the range 0 through 250. If no
expression is given, a default result (which depends on the implementation,
and is typically zero) is passed back to the caller.

Example:

j=3
exit j*4
/* Would exit with the value '12' x/

“Running off the end” of a program is equivalent to the instruction return;. In
the case where the program is simply a stand-alone application with no class
or method instructions, this has the same effect as exit, in that it terminates the
whole program and returns a default result.

60

3.6 If instruction

if expression[;]
then[;] instruction
[else[;] instruction]

The if construct is used to conditionally execute an instruction or group of in-
structions. It can also be used to select between two alternatives. The expression
is evaluated and must result in either 0 or 1. If the result was 1 (true) then the
instruction after the then is executed. If the result was 0 (false) and an else was
given then the instruction after the else is executed. Example:

if answer='Yes' then say 'OK!'
else say 'Why not?'

Remember that if the else clause is on the same line as the last clause of the then
part, then you need a semicolon to terminate that clause. Example:

if answer='Yes' then say 'OK!'; else say 'Why not?'

The else binds to the nearest then at the same level. This means that any if that
is used as the instruction following the then in an if construct that has an else
clause, must itself have an else clause (which may be followed by the dummy
instruction, nop). Example:

if answer='Yes' then if name='Fred' then say 'OK, Fred.'

else say 'OK.'
else say 'Why not?'

To include more than one instruction following then or else, use a grouping
instruction (do, loop, or select). Example:

if answer='Yes' then do
say 'Line one of two'
say 'Line two of two'
end

In this instance, both say instructions are executed when the result of the if
expression is 1.

3.6.1 Short circuit evaluation

Multiple expressions, separated by commas, can be given on the if clause,
which then has the syntax:

if expression[, expression]... [;]

In this case, the expressions are evaluated in turn from left to right, and if the
result of any evaluation is 1 then the test has succeeded and the instruction fol-

61

lowing the associated then clause is executed. If all the expressions evaluate to
0 and an else was given then the instruction after the else is executed.

Note that once an expression evaluation has resulted in 1, no further expressions
in the clause are evaluated. So, for example, in:

-- assume 'name' is a string
if name=null, name='"' then say 'Empty'

then if name does not refer to an object it will compare equal to null and the say
instruction will be executed without evaluating the second expression in the if
clause.

Notes:

1. Aninstruction may be any assignment, method call, or keyword instruction,
including any of the more complex constructions such as do, 1loop, select,
and the if instruction itself. A null clause is not an instruction, however, so
putting an extra semicolon after the then or else is not equivalent to putting
a dummy instruction. The nop instruction is provided for this purpose.

2. The keyword then is treated specially, in that it need not start a clause. This
allows the expression on the if clause to be terminated by the then, without
a”;” being required - were this not so, people used to other computer lan-
guages would be inconvenienced. Hence the symbol then cannot be used
as a variable name within the expression. B2

3.7 Import instruction

impoxt name;

where name is one or more non-numeric symbols separated by periods,
with an optional trailing period.

The import instruction is used to simplify the use of classes from other packages.
If a class is identified by an import instruction, it can then be referred to by its
short name, as given on the class instruction (see page pY) , as well as by its
tully qualified name.

There may be zero or more import instructions in a program. They must precede
any class instruction (or any instruction that would start the default class).

In the following description, a package name names a package as described under
the package instruction (see page B3). The import name must be one of:

+ A qualified class name, which is a package name immediately followed by

62

a period which is immediately followed by a short class name - in this case,
the individual class identified is imported.

+ A package name - in this case, all the classes in the specified package are
imported. The name may have a trailing period.

« A partial package name (a package name with one or more parts omitted
from the right, indicated by a trailing period after the parts that are present)
- in this case, all classes in the package hierarchy below the specified point
are imported.

Examples:

import java.lang.String
import java.lang
import java.

The first example above imports a single class (which could then be referred to
simply as ”String”). The second example imports all classes in the “java.lang”
package. The third example imports all classes in all the packages whose name
starts with ”“java.”.

When a class is imported explicitly, for example, using
import java.awt.List

this indicates that the short name of the class (List, in this example) may be
used to refer to the class unambiguously. That is, using this short name will
not report an ambiguous reference warning (as it would without the import
instruction, because a java.util.List class was added in Java 1.2).

It follows that:

 Two classes imported explicitly cannot have the same short name.
+ No class in a program being compiled can have the same short name as a
class that is imported explicitly.

because in either of these situations a use of the short name would be ambigu-
ous.

Note also that an explicit import does not import the minor or dependent classes
associated with a name; they each require their own explicit import (unless the
entire package is imported).

In the reference implementation, the fundamental NetRexx and Java package hierarchies
are automatically imported by default, as though the instructions:

import netrexx.lang.
import java.lang.
import java.1io.
import java.util.
import java.net.
import java.awt.
import java.applet.
import javax.swing

had been executed before the program begins. For [DK9+ environments, NetRExx looks
for packages and classes in JPMS’ jrt:/ file system In addition, classes in the current

63

(working) directory are imported if no package instruction is specified. If a package
instruction is specified then all classes in that package are imported.

3.8 Iterate instruction

iterate [name];

where name is a non-numeric symbol.

iterate alters the flow of control within a loop construct. It may only be used
in the body (the first instructionlist) of the construct.

Execution of the instruction list stops, and control is passed directly back up
to the loop clause just as though the last clause in the body of the construct
had just been executed. The control variable (if any) is then stepped (iterated)
and termination conditions tested as normal and the instruction list is executed
again, unless the loop is terminated by the loop clause.

If no name is specified, then iterate will step the innermost active loop.

If a name is specified, then it must be the name of the label, or control variable if
there is no label, of a currently active loop (which may be the innermost), and
this is the loop that is iterated. Any active do, loop, or select constructs inside
the loop selected for iteration are terminated (as though by a leave instruction).

Example:

loop i=1 to 4
if 1=2 then iterate 1
say 1
end
/* Would display the numbers: 1, 3, 4 x/

Notes:

1. A loop is active if it is currently being executed. If a method (even in the
same class) is called during execution of a loop, then the loop becomes
inactive until the method has returned. iterate cannot be used to step an
inactive loop.

2. The name symbol, if specified, must exactly match the label (or the name
of the control variable, if there is no label) in the 1oop clause in all respects
except case.

3.9 Leave instruction

64

leave [name];

where name is a non-numeric symbol.

leave causes immediate exit from one or more do, loop, or select constructs. It
may only be used in the body (the first instructionlist) of the construct.

Execution of the instruction list is terminated, and control is passed to the end
clause of the construct, just as though the last clause in the body of the construct
had just been executed or (if a loop) the termination condition had been met
normally, except that on exit the control variable (if any) will contain the value
it had when the leave instruction was executed.

If no name is specified, then 1eave must be within an active loop and will termi-
nate the innermost active loop.

If a name is specified, then it must be the name of the label (or control variable for
a loop with no label), of a currently active do, 1loop, or select construct (which
may be the innermost). That construct (and any active constructs inside it) is
then terminated. Control then passes to the clause following the end clause that
matches the do, loop, or select clause identified by the name.
Example:
loop 1=1 to 5

say 1

if 1=3 then leave

end i
/* Would display the numbers: 1, 2, 3 %/

Notes:

1. If any construct being left includes a finally clause, the instructionlist fol-
lowing the finally will be executed before the construct is left.

2. A do, loop, or select construct is active if it is currently being executed. If a
method (even in the same class) is called during execution of an active con-
struct, then the construct becomes inactive until the method has returned.
leave cannot be used to leave an inactive construct.

3. The name symbol, if specified, must exactly match the label (or the name
of the control variable, for a loop with no label) in the do, 1oop, or select
clause in all respects except case.

3.10 Loop instruction

loop [label name] [protect termp] [repetitor] [conditionall;
instructionlist
[catch [vare =] exception;

65

instructionlist]...
[finally[;]
instructionlist]
end [name];

where repetitor is one of:

varc = expri [to exprt] [by exprb] [foxr exprf]
varo over termo

for exprr

forever

and conditional is either of:

while exprw
until expru

and name is a non-numeric symbol
and instructionlist is zero or more instructions

and expri, exprt, exprb, exprf, exprr, exprw, and expru are expressions.

The loop instruction is used to group instructions together and execute them
repetitively. The loop may optionally be given a label, and may protect an ob-
ject while the instructions in the loop are executed; exceptional conditions can
be handled with catch and finally. loop is the most complicated of the NetRexx
keyword instructions. It can be used as a simple indefinite loop, a predeter-
mined repetitive loop, as a loop with a bounding condition that is recalculated
on each iteration, or as a loop that steps over the contents of a collection of val-
ues.

3.10.1 Syntax notes:

+ The label and protect phrases may be in any order. They must precede
any repetitor or conditional.

» The first instructionlist is known as the body of the loop.

+ The to, by, and for phrases in the first form of repetitor may be in any order,
if used, and will be evaluated in the order they are written.

+ Any instruction allowed in a method is allowed in an instructionlist, includ-
ing assignments, method call instructions, and keyword instructions (in-
cluding any of the more complex constructions such as if, do, select, or
the loop instruction itself).

« If for or forever start the repetitor and are followed by an "=" character,
they are taken as control variable names, not keywords (as for assignment

66

instructions).

 The expressions expri, exprt, exprb, or exprf will be ended by any of the key-
words to, by, for, while, or until (unless the word is the name of a vari-
able).

+ The expressions exprw or expru will be ended by either of the keywords
while or until (unless the word is the name of a variable).

3.10.2 Indefinite loops

If neither repetitor nor conditional are present, or the repetitor is the keyword
forever, then the loop is an indefinite loop. It will be ended only when some
instruction in the first instructionlist causes control to leave the loop.

Example:

/* This displays "Go caving!" at least once x/
loop forever

say 'Go caving!'

if ask='"' then leave
end

3.10.3 Bounded loops

If a repetitor (other than forever) or conditional is given, the first instructionlist
forms a bounded loop, and the instruction list is executed according to any repetitor
phrase, optionally modified by a conditional phrase.

Simple bounded loops When the repetitor starts with the keyword for, the ex-
pression exprr is evaluated immediately (with 0 added, to effect any round-
ing) to give a repetition count, which must be a whole number that is zero
or positive. The loop is then executed that many times, unless it is termi-
nated by some other condition.

Example:
/* This displays "Hello" five times x/
loop for 5

say 'Hello'
end

Controlled bounded loops A controlled loop begins with an assignment, which
can be identified by the ”=" that follows the name of a control variable,
varc. The control variable is assigned an initial value (the result of expri,
formatted as though 0 had been added) before the first execution of the
instruction list. The control variable is then stepped (by adding the result
of exprb) before the second and subsequent times that the instruction list is
executed.

The name of the control variable, varc, must be a non-numeric symbol that
names an existing or new variable in the current method or a property in
the current class (that is, it cannot be element of an array, the property of a
superclass, or a more complex term). It is further restricted in that it must

67

not already be used as the name of a control variable or label in a loop (or
do or select construct) that encloses the new loop.
The instruction list in the body of the loop is executed repeatedly while
the end condition (determined by the result of exprt) is not met. If exprb
is positive or zero, then the loop will be terminated when varc is greater
than the result of exprt. If negative, then the loop will be terminated when
varc is less than the result of exprt. The expressions exprt and exprb must
resultin numbers. They are evaluated once only (with 0 added, to effect any
rounding), in the order they appear in the instruction, and before the loop
begins and before expri (which must also result in a number) is evaluated
and the control variable is set to its initial value.
The default value for exprbis 1. If no exprt is given then the loop will execute
indefinitely unless it is terminated by some other condition. Example:
loop 1=3 to -2 by -1

say 1
end
/* Would display: 3, 2, 1, 0, -1, -2 %/

Note that the numbers do not have to be whole numbers: Example:

x=0.3
loop y=x to x+4 by 0.7

say y
end

/* Would display: 0.3, 1.0, 1.7, 2.4, 3.1, 3.8 */

The control variable may be altered within the loop, and this may affect
the iteration of the loop. Altering the value of the control variable in this
way is normally considered to be suspect programming practice, though
it may be appropriate in certain circumstances. Note that the end condi-
tion is tested at the start of each iteration (and after the control variable is
stepped, on the second and subsequent iterations). It is therefore possible
for the body of the loop to be skipped entirely if the end condition is met
immediately. The execution of a controlled loop may further be bounded
by a for phrase. In this case, exprf must be given and must evaluate to a
non-negative whole number. This acts just like the repetition count in a
simple bounded loop, and sets a limit to the number of iterations around
the loop if it is not terminated by some other condition.

exprf is evaluated along with the expressions exprt and exprb. That is, it
is evaluated once only (with 0 added), when the loop instruction is first
executed and before the control variable is given its initial value; the three
expressions are evaluated in the order in which they appear. Like the to
condition, the for count is checked at the start of each iteration, as shown
in the programmer’s (see page ['T) model:ea.. Example:

loop y=0.3 to 4.3 by 0.7 for 3

say y
end

/* Would display: 0.3, 1.0, 1.7 x/

In a controlled loop, the symbol that describes the control variable may be
specified on the end clause (unless a label is specified, see below). NetRexx

68

will then check that this symbol exactly matches the varc of the control
variable in the loop clause (in all respects except case). If the symbol does
not match, then the program is in error - this enables the nesting of loops
to be checked automatically. Example:

loop k=1 to 10

ena.k /* Checks this is the END for K loop */

Note: The values taken by the control variable may be affected by the
numeric settings, since normal NetRexx arithmetic rules apply to the com-
putation of stepping the control variable.

Over When the second token of the repetitor is the keyword over, the control
variable, varo, is used to work through the sub-values in the collection of
indexed strings identified by termo. In this case, the loop instruction takes a
“snapshot” of the indexes that exist in the collection at the start of the loop,
and then for each iteration of the loop the control variable is set to the next
available index from the snapshot.

The number of iterations of the loop will be the number of indexes in the
collection, unless the loop is terminated by some other condition. Example:
mycoll=""
mycoll['Tom']=1
mycoll['Dick']=2
mycoll['Harry']=3
loop name over mycoll
say mycoll[name]
end
/* might display: 3, 1, 2 */

Notes:

1. The order in which the values are returned is undefined; all that
is known is that all indexes available when the loop started will be
recorded and assigned to varo in turn as the loop iterates.

2. The same restrictions apply to varo as apply to varc, the control variable
for controlled loops (see above).

3. Similarly, the symbol varo may be used as a name for the loop and be
specified on the end clause (unless a label is specified, see below).

In the reference implementation, the over form of repetitor may also be used
to step though the contents of any object that is of a type that is a subclass of
java.util.Dictionary, such as an object of type java.util.Hashtable. In this
case, termo specifies the dictionary, and a snapshot (enumeration) of the keys
to the Dictionary is taken at the start of the loop. Each iteration of the loop then
assigns a new key to the control variable varo which must be (or will be given, if
it is new) the type java.lang.Object.

Conditional phrases Any of the forms of loop syntax can be followed by a con-
ditional phrase which may cause termination of the loop.
If while is specified, exprw is evaluated, using the latest values of all vari-
ables in the expression, before the instruction list is executed on every itera-
tion, and after the control variable (if any) is stepped. The expression must

69

evaluate to either 0 or 1, and the instruction list will be repeatedly executed
while the result is 1 (that is, the loop ends if the expression evaluates to 0).
Example:

loop i=1 to 10 by 2 while 1<6
say 1

end

/* Would display: 1, 3, 5 */

If until is specified, expru is evaluated, using the latest values of all vari-
ables in the expression, on the second and subsequent iterations, and before
the control variable (if any) is stepped. B The expression must evaluate to
either 0 or 1, and the instruction list will be repeatedly executed until the
resultis 1 (that is, the loop ends if the expression evaluates to 1). Example:

loop 1=1 to 10 by 2 until 1>6
say 1

end

/* Would display: 1, 3, 5, 7 %/

Note that the execution of loops may also be modified by using the iterate or
leave instructions.

3.10.4 Label phrase

The label phrase may used to specify a name for the loop. The name can then
optionally be used on

+ a leave instruction, to specify the name of the loop to leave

* an iterate instruction, to specify the name of the loop to be iterated

« the end clause of the loop, to confirm the identity of the loop that is being
ended, for additional checking.

Example:

loop label pooks i=1 to 10
Lloop label hill while j<3

i%.a=b then leave pooks

end hill
end pooks

In this example, the leave instruction leaves both loops.

If a label is specified using the label keyword, it overrides any name derived
from the control variable name (if any). That is, the variable name cannot be
used to refer to the loop if a label is specified.

53Thus, it appears that the until condition is tested after the instruction list is executed on each iteration. However,
it is the loop clause that carries out the evaluation.

70

3.10.5 Protect phrase

The protect phrase may used to specify a term, termp, that evaluates to a value
that is not just a type and is not of a primitive type; while the loop construct is
being executed, the value (object) is protected - that is, all the instructions in
the loop construct have exclusive access to the object. Example:

loop protect myobject while a<b

end

Both label and protect may be specified, in any order, if required.

3.10.6 Exceptions in loops

Exceptions that are raised by the instructions within a loop construct may be
caught using one or more catch clauses that name the exception that they will
catch. When an exception is caught, the exception object that holds the details
of the exception may optionally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will al-
ways be executed when the loop ends, even if an exception is raised (whether
caught or not).

The Exceptions section (see page [30) has details and examples of catch and
finally.

3.10.7 Programmer’s model - how a typical loop is executed

This model forms part of the definition of the 1oop instruction. For the following
loop:

loop varc = expri to exprt by exprb while exprw
instruction list
end

NetRexx will execute the following;:

$tempt=exprt+0 /% ($variables are internal and */
$tempb=exprb+0 /* are not accessible.) */
varc=expri+0

Transfer control to the point identified as $start:

$loop:
/% An UNTIL expression would be tested here, with: %/
/* if expru then leave */
varc=varc + $tempb

$start:

if varc > $tempt then leave /% leave quits a loop =*/

71

/* A FOR count would be checked here */
if \ exprw then leave

instruction list
Transfer control to the point identified as $loop:

Notes:

1. This example is for exprb >= 0. For a negative exprb, the test at the start
point of the loop would use ”<” rather than ”>".

2. The upwards transfer of control takes place at the end of the body of the
loop, immediately before the end clause (or any catch or finally clause).
The end clause is only reached when the loop is finally completed.

3.11 Method instruction

method name[([arglist])]
[visibility] [modifier] [protect] [binary] [deprecated]
[xeturns termr]
[signals signallist];

where arglist is a list of one or more assignments, separated by commas
and visibility is one of:

inheritable
private
public
shared

and modifier is one of:

abstract
constant
final
native
static

and signallist is a list of one or more terms, separated by commas.

The method instruction is used to introduce a method within a class, as described
in Program structure (see page Pg), and define its attributes. The method must
be given a name, which must be a non-numeric symbol. This is its short name.

72

If the short name of a method matches the short name of the class in which it
appears, it is a constructor method. Constructor methods are used for constructing
values (objects), and are described in detail in Methods and Constructors (see
page 7).

The body of the method consists of all clauses following the method instruction
(if any) until the next method or class instruction, or the end of the program.

The wvisibility, modifier, and protect keywords, and the returns and signals
phrases, may appear in any order.

3.11.1 Arguments

The arglist on a method instruction, immediately following the method name, is
optional and defines a list of the arguments for the method. An arqument is a
value that was provided by the caller when the method was invoked.

If there are no arguments, this may optionally be indicated by an “empty” pair
of parentheses.

In the arglist, each argument has the syntax of an assignment (see page B3) ,
where the "=" and the following expression may be omitted. The name in the
assignment provides the name for the argument (which must not be the same
as the name of any property in the class). Each argument is also optionally as-
signed a type, or type and default value, following the usual rules of assign-
ment. If there is no assignment, the argument is assigned the NetRexx string
type, Rexx.

If there is no assignment (that is, there is no ”=") or the expression to the right
of the ”"=" returns just a type, the argument is required (that is, it must always
be specified by the caller when the method is invoked).

If an explicit value is given by the expression then the argument is optional; when
the caller does not provide an argument in that position, then the expression is
evaluated when the method is invoked and the result is provided to the method
as the argument.

Optional arguments may be omitted “from the right” only. That is, arguments
may not be omitted to the left of arguments that are not omitted. Examples:

method fred

method fred()

method fred(width, height)

method fred(width=int, height=int 10)

In these examples, the first two method instructions are equivalent, and take no
arguments. The third example takes two arguments, which are both strings of
type Rexx. The final example takes two arguments, both of type int; the second
argument is optional, and if not supplied will default to the value 10 (note that
any valid expression could be used for the default value).

73

3.11.2 Visibility

Methods may be public, inheritable, private, or shared:

« A public method is visible to (that is, may be used by) all other classes to
which the current class is visible.

* An inheritable method is visible to (that is, may be used by) all classes in the
same package and also those classes that extend (that is, are subclasses of)
the current class.

* A private method is visible only within the current class.

* A shared method is visible within the current package but is not visible out-
side the package. Shared methods cannot be inherited by classes outside
the package.

By default (i.e., if no visibility keyword is specified), methods are public.

3.11.3 Modifier

Most methods consist of instructions that follow the method instruction and im-
plement the method; the method is associated with an object constructed by the
class. These are called standard methods. The modifier keywords define that the
method is not a standard method - it is special in some way. Only one of the
following modifier keywords is allowed:

abstract An abstract method has the name of the method and the types (but
not values) of its arguments defined, but no instructions to implement the
method are provided (or permitted).
If a class contains any abstract methods, an object cannot be constructed
from it, and so the class itself must be abstract; the abstract keyword must
be present on the class instruction (see page p3) .
Within an interface class, the abstract keyword is optional on the methods
of the class, as all methods must be abstract. No other modifier is allowed
on the methods of an interface class.

constant A constant method is a static method that cannot be overridden by a
method in a subclass of the current class. That is, it is both final and static
(see below).

final A final method is considered to be complete; it cannot be overridden by a
subclass of the current class. private methods are implicitly final. B4

native A native method is a method that is implemented by the environment,
not by instructions in the current class. Such methods have no NetRexx
instructions to implement the method (and none are permitted), and they
cannot be overridden by a method in a subclass of the current class.
Native methods are used for accessing primitive operations provided by
the underlying operating system or by implementation-dependent pack-
ages.

54This modifier may allow compilers to improve the performance of methods that are final, but may also reduce the
reusability of the class.

74

static A static method is a method that is not a constructor and is associated with
the class, rather than with an object constructed by the class. It cannot use
properties directly, except those that are also static (or constant).
Static methods may be invoked in the following ways:

1. Within the initialization expression of a static or constant property
(such methods are invoked when the class is first loaded).

2. By qualifying the name of the method with the name of its class
(qualified by the package name if necessary), for example, using
“Math.Sin(1.3)” or “java.lang.Math.Sin(1.3)”. Methods called in this
way are in effect functions.

3. By implicitly qualifying the name by including the name of its class
in the uses phrase in the class instruction for the current class. Static
methods in classes listed in this way can be used directly, without qual-
ification, for example, as “Sin(1.3)”. They may be still be qualified, if
preferred.

In the reference implementation, stand-alone applications are started by the java
command invoking a static method called main which takes a single arqument (of
type java.lang.String[|) and returns no result.

3.11.4 Protect

The keyword protect indicates that the method protects the current object (or
class, for a static method) while the instructions in the method are executed.
That is, the instructions in the method have exclusive access to the object; if
some other method (or construct) is executing in parallel with the invocation
of the method and is protecting the same object then the method will not start
execution until the object is no longer protected.

Note that if a method or construct protecting an object invokes a method (or
starts a new construct) that protects the same object then execution continues
normally. The inner method or construct is not prevented from executing, be-
cause it is not executing in parallel.

3.11.5 Binary

The keyword binary indicates that the method is a binary method.

In binary methods, literal strings and numeric symbols are assigned native
string or binary (primitive) types, rather than NetRexx types, and native binary
operations are used to implement operators where possible. When binary is
not in effect (the default), terms in expressions are converted to NetRexx types
before use by operators. The section Binary values and operations (see page [[27))
operations. describes the implications of binary methods and classes in detail.
Notes:

1. Only the instructions inside the body of the method are affected by the
binary keyword; any arguments and expressions on the method instruc-
tion itself are not affected (this ensures that a single rule applies to all the

75

method signatures in a class).

2. All methods in a binary class are binary methods; the binary keyword on
methods is provided for classes in which only the occasional method needs
to be binary (perhaps for performance reasons). It is not an error to specify
binary on a method in a binary class.

3.11.6 Deprecated

The keyword deprecated indicates that the method is deprecated, which implies
that a better alternative is available and documented. A compiler can use this
information to warn of out-of-date or other use that is not recommended.

Note that individual methods in interface classes cannot be deprecated; the
whole class should be deprecated in this case.

3.11.7 Returns

The returns keyword is followed by a term, termr, that must evaluate to a type.
This type is used to define the type of values returned by return instructions
within the method.

The returns phrase is only required if the method is to return values of a type
thatis not NetRexx strings (class Rexx). If returns is specified, all return instruc-
tions (see page B7) within the method must specify an expression. Example:

method filer(path, name) returns File
return File(path||name)

This method always returns a value which is a File object.

3.11.8 Signals

The signals keyword introduces a list of terms that evaluate to types that are
Exceptions (see page [[30) . This list enumerates and documents the exceptions
that are signalled within the method (or by a method which is called from the
current method) but are not caught by a catch clause in a control construct.
Example:

method soup(cat) signals IOException, DivideByZero

It is considered good programming practice to use this list to document “un-
usual” exceptions signalled by a method. Implementations that support the
concept of checked exceptions(see page [[32) must report as an error any checked
exception that is incorrectly included in the list (that is, if the exception is never
signalled or would always be caught). Such implementations may also offer an
option that enforces the listing of all or some checked exceptions.

76

3.11.9 Duplicate methods

Methods may not duplicate properties or other methods in the same class.
Specifically:

+ The short name of a method must not be the same as the name of any prop-
erty in the same class.

+ The number (zero or more) and types of the arguments of a method (or any
subset permitted by omitting optional arguments) must not be the same as
those of any other method of the same name in the class (also checking any
subset permitted by omitting optional arguments).

Note that the second rule does allow multiple methods with the same name in
a class, provided that the number of arguments differ or at least one argument
differs in type.

3.12 Nop instruction

nop;

nop is a dummy instruction that has no effect. It can be useful as an explicit “do
nothing” instruction following a then or else clause. Example:

select
when a=b then nop -- Do nothing
when a>b then say 'A > B'
otherwise say 'A < B'
end

Note: Putting an extra semicolon instead of the nop would merely insert a null
clause, which would just be ignored by NetRexx. The second when clause would
then immediately follow the then, and hence would be reported as an error. nop
is a true instruction, however, and is therefore a valid target for the then clause.

3.13 Numeric instruction

numeric digits [exprd];
form [scientific];
[engineering] ;

77

The numeric instruction is used to change the way in which arithmetic opera-
tions are carried out by a program. The effects of this instruction are described
in detail in the section on Numbers and Arithmetic (see page [18) .

numeric digits controls the precision under which arithmetic operations will
be evaluated (see page [[20) .
If no expression exprd is given then the default value of 9 is used. Other-
wise the result of the expression is rounded, if necessary, according to the
current setting of numeric digits before it is used. The value used must
be a positive whole number. There is normally no limit to the value for
numeric digits (except the constraints imposed by the amount of storage
and other resources available) but note that high precisions are likely to be
expensive in processing time. It is recommended that the default value be
used wherever possible.
Note that small values of numeric digits (for example, values less than
6) are generally only useful for very specialized applications. The setting
of numeric digits affects all computations, so even the operation of loops
may be affected by rounding if small values are used.
If an implementation does not support a requested value for numeric
digits then the instruction will fail with an exception (which may, as
usual, be caught with the catch clause of a control construct).
The current setting of numeric digits may be retrieved with the digits spe-
cial word (see page [[05) .

numeric form controls which form of exponential notation (see page [25) is
to be used for the results of operations. This may be either scientific (in
which case only one, non-zero, digit will appear before the decimal point),
or engineering (in which case the power of ten will always be a multi-
ple of three, and the part before the decimal point will be in the range 1
through 999). The default notation is scientific. The form is set directly by
the sub-keywords scientific or engineering; if neither sub-keyword is
given, scientific is assumed. The current setting of numeric form may be
retrieved with the form special word (see page [03) .
If an implementation does not support a requested value for numeric form
then the instruction will fail with an exception (which may, as usual, be
caught with the catch clause of a control construct).

The numeric instruction may be used where needed as a dynamically executed
instruction in a method.

It may also appear, more than once if necessary, before the first method in a class,
in which case it forms the default setting for the initialization of subsequent
properties in the class and for all methods in the class. In this case, any exception
due to the numeric instruction is raised when the class is first loaded.

Further, one or more numeric instructions may be placed before the first class
instruction in a program; they do not imply the start of a class. The numeric
settings then apply to all classes in the program (except interface classes), as
though the numeric instructions were placed immediately following the class
instruction in each class (except that they will not be traced).

78

3.14 Options instruction

options wordlist;

where wordlist is one or more symbols separated by blanks.

The options instruction is used to pass special requests to the language proces-
sor (for example, an interpreter or compiler).

Individual words, known as option words, in the wordlist which are meaningful to
the language processor will be obeyed (these might control optimizations, en-
force standards, enable implementation-dependent features, etc.); those which
are not recognized will be ignored (they are assumed to be instructions to a
different language processor). Option words in the list that are known will be
recognized independently of case.

There may be zero or more options instructions in a program. They apply to
the whole program, and must come before the first class instruction (or any
instruction that starts a class).

In the reference implementation, the known option words are:

address The address option allows programs to use the address statement, which
enables calling external programs. Noaddress disables the use of this statement.
Address is the default.

annotations All annotations are passed through to Java, this is the default. When
option -noannotations is in effect, no annotations will be passed through, al-
though they are in the program source. This implies that the @SuppressWarn-
ings(“unchecked”) annotation, which is passed through every method, is also left
out, which possibly yields (harmless) javac warnings (on the subject of generics).

binary All classes in this program will be binary (see page b7)) classes. In binary
classes, literals are assigned binary (primitive) or native string types, rather than
NetRexx types, and native binary operations are used to implement operators
where appropriate, as described in "Binary values and operations” (see page
I27) . In classes that are not binary, terms in expressions are converted to the
NetRexx string type, RExx, before use by operators.

comments Comments from the NetRexx source program will be passed through to the
the Java output file (which may be saved with a .java.keep extension by using the
-keep command option).
Line comments become Java line comments (introduced by ”//”). Block comments
become Java block comments (delimited by ” /*” and "* /"), with nested block com-
ments having their delimiters changed to " (-" and ”-)").

classpath The -classpath operand allows dynamic specification of the classpath used
by the NetRexxC compiler without having to depend on the CLASSPATH envi-
ronment variable. There is no -noclasspath counterpart.

compact Requests that warnings and error messages be displayed in compact form.
This format is more easily parsed than the default format, and is intended for use

79

by editing environments.

Each error message is presented as a single line, prefixed with the error token iden-
tification enclosed in square brackets. The error token identification comprises three
words, with one blank separating the words. The words are: the source file speci-
fication, the line number of the error token, the column in which it starts, and its
length. For example (all on one line):

[D:

test

test.nrx 3 8 5] Exrror: The external name

"class’ is a Java reserved word, so would not be
usable from Java programs

Any blanks in the file specification are replaced by a null (’
0") character. Additional words could be added to the error token identification
later.

console Requests that compiler messages be written to console (the default). Use
-noconsole to prevent messages being written to the console.
This option only has an effect as a compiler option, and applies to all programs
being compiled.

crossref Requests that cross-reference listings of variables be prepared, by class.

decimal Decimal arithmetic may be used in the program. If nodecimal is specified,
the language processor will report operations that use (o, like normal string com-
parison, might use) decimal arithmetic as an error. This option is intended for
performance-critical programs where the overhead of inadvertent use of decimal
arithmetic is unacceptable.

diag Requests that diagnostic information (for experimental use only) be displayed.
The diag option word may also have side-effects.

ecj Indicates to the translator a preference for using the ecj compiler, if available

explicit Requires that all local variables must be explicitly declared (by assigning them
a type but no value) before assigning any value to them. This option is intended
to permit the enforcement of "house styles” (but note that the NetRexx compiler
always checks for variables which are referenced before their first assignment, and
warns of variables which are set but not used).

format Requests that the translator output file (Java source code) be formatted for im-
proved readability. Note that if this option is in effect, line numbers from the input
file will not be preserved (so run-time errors and exception trace-backs may show
incorrect line numbers).

implicituses Controls whether RexxDate, RexxRexx and RexxStream are implicitly
used. By default every class "implicitly uses’ these classes. noimplicituses dis-
ables this.

java Requests that Java source code be produced by the translator. If nojava is specified,
no Java source code will be produced; this can be used to save a little time when
checking of a program is required without any compilation or Java code resulting.

javac Indicates to the translator a preference for using the javac compiler, if available

keepasjava Requests that Java source code is kept as [programfile].java. Implies -
replace. This option only has an effect as a compiler option, and applies to all
programs being compiled.

80

logo Requests that the language processor display an introductory logotype sequence
(name and version of the compiler or interpreter, etc.).

mod Requests that the language processor produces a formatted representation of the
source program - see Programming Guide.

replace Requests that replacement of the translator output (.java) file be allowed. The
default, noreplace, prevents an existing .java file being accidentally overwritten.

savelog Requests that compiler messages be written to the file NetRExxC.log in the cur-
rent directory. The messages are also displayed on the console, unless -noconsole
is specified.
This option only has an effect as a compiler option, and applies to all programs
being compiled.

sourcedir Requests that all .class files be placed in the same directory as the source
file from which they are compiled. Other output files are already placed in that
directory. Note that using this option will prevent the - run command option from
working unless the source directory is the current directory.

strictargs Requires that method invocations always specify parentheses, even when no
arguments are supplied. Also, if strictargs is in effect, method arquments are
checked for usage - a warning is given if no reference to the arqument is made in
the method.

strictassign Requires that only exact type matches be allowed in assignments (this is
stronger than Java requirements). This also applies to the matching of arquments
in method calls.

strictcase Requires that local and external name comparisons for variables, properties,
methods, classes, and special words match in case (that is, names must be identical
to match).

strictimport Requires that all imported packages and classes be imported explicitly
using import instructions. That is, if in effect, there will be no automatic imports
(see page b2) , except those related to the package instruction.
This option only has an effect as a compiler option, and applies to all programs
being compiled.

strictprops Requires that all properties, including those local to the current class, be
qualified in references. That is, if in effect, local properties cannot appear as simple
names but must be qualified by this. (or equivalent) or the class name (for static
properties).

strictsignal Requires that all checked exceptions (see page [[32)) signalled within a
method but not caught by a catch clause be listed in the signals phrase of the
method instruction.

symbols Symbol table information (names of local variables, etc.) will be included in
any generated .class file. This option is provided to aid the production of classes
that are easy to analyse with tools that can understand the symbol table informa-
tion. The use of this option increases the size of .class files.

trace, traceX If given as trace, tracel, or trace2, then trace instructions are ac-
cepted. The trace output is directed according to the option word: tracel requests
that trace output is written to the standard output stream, trace or trace2 imply
that the output should be written to the standard error stream (the default).
If notrace is given, then trace instructions are ignored. The latter can be useful to
prevent tracing overheads while leaving trace instructions in a program.

81

utf8 If given, clauses following the options instruction are expected to be encoded us-
ing UTF-8, so all Unicode characters may be used in the source of the program.
In UTF-8 encoding, Unicode characters less than "\u0080" are represented using
one byte (whose most-significant bit is 0), characters in the range "\u0080’ through
"\uO7FF’ are encoded as two bytes, in the sequence of bits:

110XXXXX 1OXXXXXX

where the eleven digits shown as x are the least significant eleven bits of the char-
acter, and characters in the range "\u0800’ through "\uFFFF’ are encoded as three
bytes, in the sequence of bits:

1110xXXXX 1OXXXXXX LOXXXXXX

where the sixteen digits shown as x are the sixteen bits of the character.

If noutf8 is given, following clauses are assumed to comprise only Unicode char-
acters in the range "\x00" through "\xFF’, with the more significant byte of the
encoding of each character being 0.

Note: this option only has an effect as a compiler option, and applies to
all programs being compiled. If present on an options instruction, it is
checked and must match the compiler option (this allows processing with
or without utf8 to be enforced).

verbose, verboseX Sets the “noisiness” of the language processor. The digit X may be
any of the digits 0 through 5; if omitted, a value of 3 is used. The options noverbose
and verbose0 both suppress all messages except errors and warnings.

warnexit0 Exit the translator with returncode 0 even if warnings are issued. This op-
tion only has an effect as a compiler option, and applies to all programs being
compiled.

Prefixing any of the above with "no” turns the selected option off. Example:
options binary nocrossref nostrictassign strictargs
The default settings of the various options are:

address nobinary nocomments nocompact console crossref decimal nodiag noexplicit
noformat implicituses java logo noreplace nosavelog nosourcedir nostrictargs
nostrictassign nostrictcase nostrictimport nostrictprops nostrictsignal
nosymbols trace2 noutf8 verbose3

When an option word is repeated (in the same options instruction or not), or conflict-
ing option words are specified, then the last use determines the state of the option.

All option words may also be set as command line options when invoking the processor,
by prefixing them with ”-": Example:

java COM.ibm.netrexx.process.NetRexxC -format foo.nrx

In this case, any options may come before, after, or between file specifications.

82

With the except of the utf8 option (see above), options set with the options instruction
override command-line settings, following the “last use” rule.

For more information, see the installation and user documentation for your implemen-
tation.

All options are listed in Appendix C on page [[80.

3.15 Package instruction

package name;

where name is one or more non-numeric symbols separated by periods.

The package instruction is used to define the package to which the class or
classes in the current program belong. Classes that belong to the same package
have privileged access to other classes in the same package, in that each class
is visible to all other classes in the same package, even if not declared public.
Packages also conveniently group classes for use by the import instruction (see
pagep2) -

The name must specify a package name, which is one or more non-numeric sym-
bols, separated by periods, with no blanks.

There must be at most one package instruction in a program. It must precede
any class instruction (or any instruction that would start the default class).

If a program contains no package instruction then its package is implementation-
defined. Typically it is grouped with other programs in some implementation-
defined logical collection, such as a directory in a file system. Examples:

package testpackage
package com.ibm.venta

When a class is identified as belonging to a package, it has a qualified class name,
which is its short name, as given on the class instruction (see pagep3) , prefixed
with the package name and a period. For example, if the short name of a class
is “"RxLanguage” and the package name is “com.ibm.venta” then the qualified
name of the class would be “com.ibm.venta.RxLanguage”.

In the reference implementation, packages are kept in a hierarchy derived from the Java
classpath, where the segments of a package name correspond to a path in the hierarchy.
The hierarchy is typically the directories in a file system, or some equivalent (such as a
"Zip” archive file), and so package names should be considered case-sensitive (as some
Java implementations use case-sensitive file systems).

83

3.16 Parse instruction

paxrse term template;

where template is one or more non-numeric symbols
separated by blanks and/or patterns, and a pattern is one of:

literalstring
[indicator] number
[indicator] (symbol)

and indicator is one of +, -, or =.

The parse instruction is used to assign characters (from a string) to one or more
variables according to the rules and templates described in the section Parsing
templates (see page [T11)).

The value of the term is expected to be a string; if it is not a string, it will be
converted to a string.

Any variables used in the template are named by non-numeric symbols (that is,
they cannot be an array reference or other term); they refer to a variable or prop-
erty in the current class. Any values that are used in patterns during the parse
are converted to strings before use.

Any variables set by the parse instruction must have a known string type, or are
given the NetRexx string type, Rexx, if they are new.

The term itself is not changed unless it is a variable which also appears in the
template and whose value is changed by being in the template.

Example:
parse wordlist wordl wordlist

In this idiomatic example, the first word is removed from wordlist and is as-
signed to the variable word1, and the remainder is assigned back to wordlist.

Notes:

1. The special words ask, source, and version, as described in the section Spe-
cial names and methods(see page [[04)), allow:

parse ask X -- parses a line from input stream

parse asknoecho x -- parses a line from input stream without
echo

parse source x -- parses 'Java method filename'

parse version x -- parses 'NetRexx version date'

These special words may also be used within expressions.

2. Similarly, it is recommended that the initial (main) method in a stand-alone
application place the command string passed to it in a variable called arg.

84

P3
If this is done, the instruction:

parse arg template

will work, in a stand-alone application, in the same way as in Rexx (even
though arg is not a keyword in this case).

3.17 Properties instruction

propexrties [visibility] [modifier] [deprecated] [unused];
where visibility is one of:

inheritable
private
public
shared
indirect

and modifier is one of:

constant
static
transient
volatile

and there must be at least one visibility or modifier keyword.

The properties instruction is used to define the attributes of following property
variables, and therefore must precede the first method instruction in a class. A
properties instruction replaces any previous properties instruction (that is,
the attributes specified on properties instructions are not cumulative).

The visibility, modifier, deprecated, and unused keywords may be in any order.

Note: An unqualified properties statement (one that has no visibility or modifier
keyword), is not in error, but generates a variable properties, which is most
probably not the intention of the programmer.The reference implementation issues
a warning but allows this practice.

551n the reference implementation, this is automatic if the main method is generated by the NetRexx language processor.
56Note, though, that the command string may have been edited by the environment; certain characters may not be
allowed, multiple blanks may have been reduced to single blanks, etc.

85

An example of the use of properties instructions may be found in the Program
Structure section (see page Pg) .

3.17.1 Visibility

Properties may be public, inheritable, private, or shared:

* A public property is visible to (that is, may be used by) all other classes to
which the current class is visible.

* An inheritable property is visible to (that is, may be used by) all classes in
the same package and also those classes that extend (that is, are subclasses
of) the current class, and which qualify the property using an object of the
subclass, or either this or super.

« A private property is visible only within the current class.

« A shared property is visible within the current package but is not visible out-
side the package. Shared properties cannot be inherited by classes outside
the package.

By default, if no properties instruction is used, or visibility is not specified, prop-
erties are inheritable (but not public).

3.17.2 Modifier

Properties may also be constant, static, transient, or volatile:

« A constant property is associated with the class, rather than with an instance
of the class (an object). It is initialized when the class is loaded and may
not be changed thereafter.

* A static property is associated with the class, rather than with an instance of
the class (an object). It is initialized when the class is loaded, and may be
changed thereafter.

* A transient property is a property which should not be saved when an in-
stance of the class is saved (made persistent).

« A volatile property may change asynchronously, outside the control of the
class, even when no method in the class is being executed. If an implemen-
tation does not allow asynchronous modification of properties, it should
ignore this keyword.

Constant and static properties exist from when the class is first loaded (used),
even if no object is constructed by the class, and there will only be one copy
of each property. Other properties are constructed and initialized only when
an object is constructed by the class; each object then has its own copy of such
properties.

By default, if no properties instruction is used, or modifier is not specified, prop-
erties are associated with an object constructed by the class.

58The default, here, was chosen to encourage the “encapsulation” of data within classes.

86

3.17.3 Deprecated

The keyword deprecated indicates that any property introduced by this instruc-
tion is deprecated, which implies that a better alternative is available and docu-
mented. A compiler can use this information to warn of out-of-date or other use
that is not recommended.

3.17.4 Unused

The keyword unused indicates that the private properties which follow are not
referenced explicitly in the code for the class, and so a language processor
should not warn that they exist but have not been used. If a visibility keyword
is specified it must be private.

For example:

properties private constant unused
-- Serialization version
serialVersionUID=1ong 8245355804974198832

3.17.5 Properties in interface classes

In interface classes (see page p7)) , properties must be both public and constant.
In such classes, these attributes for properties are the default and the properties
instruction must not be used.

3.18 Return instruction

return [expression];

return is used to return control (and possibly a result) from a NetRexx program
or method to the point of its invocation.

The expression (if any) is evaluated, active control constructs are terminated
(as though by a leave instruction), and the value of the expression is passed
back to the caller.

The result passed back to the caller is a string of type Rexx, unless a different type
was specified using the returns keyword on the method instruction (see page[/'2)
for the current method. In this case, the type of the value of the expression must
match (or be convertible to, as by the rules for assignment) the type specified
by the returns phrase.

Within a method, the use of expressions on return must be consistent. That is,
either all return instructions must specify a expression, or none may. If a returns
phrase is given on the method instruction for the current method then all return
instructions must specify an expression.

87

3.19 Say instruction

say [expression];

say writes a string to the default output character stream. This typically causes
it to be displayed (or spoken, or typed, etc.) to the user.

Example:

data=100

say data 'divided by 4 =>' data/4

/* would display: "100 divided by 4 => 25" x/

The result of evaluating the expression is expected to be a string; if it is not a
string, it will be converted to a string. This result string is written from the pro-
gram via an implementation-defined output stream.

By default, the result string is treated as a “line” (an implementation-dependent
mechanism for indicating line termination is effected after the string is written).
If, however, the string ends in the NUL character ("\-" or "\0”) then that character
is removed and line termination is not indicated.

The result string may be of any length. If no expression is specified, or the ex-
pression result is null, then an empty line is written (that is, as though the ex-
pression resulted in a null string).

3.20 Select instruction

select [label name] [protect term] [case expression];

whenlist
[othexwise[;] instructionlist]

[catch [vare =] exception;
instructionlist]...

[finally[;]
instructionlist]

end [name];

where name is a non-numexric symbol
and whenlist is one or more whenconstructs
and whenconstruct is:

when expression[, expression]... [;] then[;] instruction

88

and instructionlist is zero or more instructions.

select is used to conditionally execute one of several alternatives. The construct
may optionally be given a label, and may protect an object while the instructions
in the construct are executed; exceptional conditions can be handled with catch
and finally, which follow the body of the construct.

Starting with the first when clause, each expression in the clause is evaluated in
turn from left to right, and if the result of any evaluation is 1 (or equals the case
expression, see below) then the test has succeeded and the instruction following
the associated then (which may be a complex instruction such as if, do, loop,
or select) is executed and control will then pass directly to the end.

If the result of all the expressions in a when clause is 0, control will pass to the
next when clause.

Note that once an expression evaluation in a when clause has resulted in a suc-
cessful test, no further expressions in the clause are evaluated.

If none of the when expressions result in 1, then control will pass to the in-
struction list (if any) following otherwise. In this situation, the absence of an
otherwise is a run-time error. & Notes:

1. Aninstruction may be any assignment, method call, or keyword instruction,
including any of the more complex constructions such as do, loop, if, and
the select instruction itself. A null clause is not an instruction, however,
so putting an extra semicolon after the then is not equivalent to putting a
dummy instruction (as it would be in C or PL/I). The nop instruction is
provided for this purpose.

2. The keyword then is treated specially, in that it need not start a clause.
This allows the expression on the when clause to be terminated by the then,
without a ”;” being required - were this not so, people used to other com-
puter languages would be inconvenienced. Hence the symbol then cannot
be used as a variable name within the expression.

3.20.1 Label phrase

If 1abel is used to specify a name for the select group, then a leave instruction
(see page b4) which specifies that name may be used to leave the group, and
the end that ends the group may optionally specify the name of the group for
additional checking. Example:

select label roman
when a=b then say 'same'
when a<b then say 'lo'
otherwise

5In the reference implementation, a NoOtherwiseException is raised.

60Strictly speaking, then should only be recognized if not the name of a variable. In this special case, however, NetRexx
language processors are permitted to treat then as reserved in the context of a when clause, to provide better performance
and more useful error reporting.

89

say 'hi'
if a=0 then leave roman
say 'a non-0'

end roman

In this example, if the variable a has the value 0 and b is negative then just "hi”
is displayed.

3.20.2 Protect phrase

If protect is given it must be followed by a term that evaluates to a value that
is not just a type and is not of a primitive type; while the select construct is
being executed, the value (object) is protected - that is, all the instructions in
the select construct have exclusive access to the object.

Both label and protect may be specified, in any order, if required.

3.20.3 Case phrase

If case is given it must follow any label or protect phrase, and must be followed
by an expression.

When case is used, the expression following it is evaluated at the start of the
select construct. The result of the expression is then compared, using the strict
equality operator (==), to the result of evaluating the expression or expressions
in each of the when clauses in turn until a match is found. As usual, if no match is
found then control will pass to the instruction list (if any) following otherwise,
and in this situation the absence of an otherwise is a run-time error. For example,
in:
select case i+l

when 1 then say 'one'

when 1+1 then say 'two'’

when 3, 4, 5 then say 'many'
end

then if i had the value 1 then the message displayed would be “two”.

The third when clause in the example demonstrates the use of the multiple ex-
pressions in a when clause in this context. Similar to a select without case, each
expression is evaluated in turn from left to right and is then compared to the
result of the case expression. As soon as one matches that result, execution of
the when clause stops (any further expressions are not evaluated) and the in-
struction following the associated then clause is executed.

Notes:

1. When case is used, the result of evaluating the expression following each
when no longer has to be 0 or 1. Instead, it must be possible to compare each
result to the result of the case expression.

2. The case expression is evaluated only on entry to the select construct; it is
not re-evaluated for each when clause.

90

3. Anexception raised during evaluation of the case expression will be caught
by a suitable catch clause in the construct, if one is present. Similarly, eval-
uation of the case expression is protected by the protect phrase, if one is
present.

4. In the reference implementation, a select case construct will be translated into
a Java switch construct provided that it meets the following criteria:

o The type of the case expression is byte, char, int, or short.
o The value of all the expressions on the when clauses are primitive constants
(that is, they consist of only constants of primitive types and operators valid
for them and so may be evaluated at compile time).
* No two expressions on the when clauses evaluate to the same value.
« It is not subject to tracing.
Under these conditions the semantics of the switch construct match those defined
for select. The example shown above would be translated to a switch construct
if i had type int and options binary were in effect.

3.20.4 Exceptions in select constructs

Exceptions that are raised by the instructions within the body of the group, or
during evaluation of the case expression, may be caught using one or more
catch clauses that name the exception that they will catch. When an exception is
caught, the exception object that holds the details of the exception may option-
ally be assigned to a variable, vare.

Similarly, a finally clause may be used to introduce instructions that will al-
ways be executed at the end of the select group, even if an exception is raised
(whether caught or not).

The Exceptions section (see page [[30) has details and examples of catch and
finally.

3.21 Signal instruction

signal term;

The signal instruction causes an “abnormal” change in the flow of control, by
raising an exception.

The exception term may be a term that constructs or evaluates to an exception
object, or it may be expressed as the name of an exception type (in which case
the default constructor, with no arguments, for that type is used to construct
an exception object). The exception object then represents the exception and is
available, if required, when the exception is handled.

The handling of exceptions is detailed in the Exceptions section (see page [30).
In summary, when an exception is signalled, all active pending do groups, Loop

91

loops, if constructs, and select constructs may be ended. For each one in turn,
from the innermost:

1. No further clauses within the body of the construct will be executed (in
this respect, signal acts like a 1eave for the construct).

2. The instructionlist following the first catch clause that matches the excep-
tion, if any, is executed.

3. The instructionlist following the finally clause for the construct, if any, is
executed.

If a catch matched the exception the exception is deemed handled, and execu-
tion resumes as though the construct ended normally (unless a new exception
was signalled in the catch or finally instruction lists, in which case it is pro-
cessed). Otherwise, any enclosing construct is ended in the same manner. If
there is no enclosing construct, then the current method is ended and the ex-
ception is signalled in the caller.

Examples:

signal RxErrorTrace

signal DivideException('Divide by zero')

In the reference implementation, the term must either

« evaluate to an object that is assignable to the type Throwable (for example, a
subclass of Exception or RuntimeException).

* be a type that is a subclass of Throwable, in which case the default constructor
(with no arguments) for the given type is used to construct the exception object.

3.22 Trace instruction

trace traceoption;

where traceoption is one of:
tracesetting
var [varlist]

where tracesetting is one of:

all
methods
off
results
int

and varlist is one or more variable names
(optionally prefixed with a + or -)

92

The trace instruction is used to control the tracing of the execution of NetRexx
methods, and is primarily used for debugging. It may change either the general
trace setting or may select or deselect the tracing of individual variables.

Within methods, the trace instruction changes the trace setting or variables trac-
ing when it is executed, and affects the tracing of all clauses in the method which
are then executed (until changed by a later trace instruction).

One or more trace instructions may appear before the first method in a class,
one of which may set the initial trace setting for all methods in the class (the
default is off) and others may set up variables tracing that applies to all the
methods in the class. These act as though the trace instructions were placed
immediately following the method instruction in each method (except that they
will not be traced).

Similarly, one or more trace instructions may be placed before the first class
instruction in a program; they do not imply the start of a class. One of these
may set the initial trace setting and others may set up variables tracing for all
classes in the program (except interface classes) and act as though the trace
instructions were placed immediately following the class instruction in each
class.

3.22.1 Tracing clauses

The trace setting controls the tracing of clauses in a program, and may be one of
the following:

all All clauses (except null clauses without commentary) which are in meth-
ods and which are executed after the trace instruction will be traced. If
trace all is placed before the first method in the current class, the method
instructions in the class, together with the values of the arguments passed
to each method, will be traced when the method is invoked (that is, trace
all implies trace methods).

methods All method clauses in the class will be traced when the method they
introduce is invoked, together with the values of the arguments passed to
each method; no other clauses, or results, will be traced. The trace methods
instruction must be placed before the first method in the current class (as
otherwise it would have no effect).

off Turns tracing off; no following clauses, variables, or results will be traced.

results All clauses (except null clauses without commentary) which are in
methods and which are executed after the trace instruction will be traced,
as though trace all had been requested. In addition, the results of all
expression evaluations and any results assigned to a variable by an assign-
ment, loop, Or parse instruction are also traced.
If trace results is placed before the first method in the current class, the
method instructions in the class will be traced when the method is invoked,
together with the values of the arguments passed to each method.

int With the trace intinstruction, interpretation of the code is interrupted and
the trace prompt *-> is presented. Clauses are interpreted one by one by

93

pressing [Enter |. While single-stepping the code, access to variables, prop-
erties and methods is available interactively. Trace output is shown as if
trace results is active.

Notes:

1. Tracing of clauses shows the data from the source of the program, start-
ing at the first character of the first token of the clause and including any
commentary from that point until the end of the clause.

2. When a loop is being traced, the loop clause itself will be traced on every
iteration of the loop, as indicated by the programmer’s model (see page
7)) ; the end clause is only traced once, when the loop completes normally.

3. With trace results,an expression isnot traced if it isimmediately used for
an assignment (in an assignment instruction, or when the control variable
is initialized in a loop instruction). The assignment will trace the result of
the expression.

4. Interactive trace as with trace intisonly available when interpreting code,
i.e. when using the -arg or -exec option. When compiling trace intawarn-
ing "+++4 Warning: TRACE INT ignored when compiling” is shown.

3.22.2 Tracing variables

The var option adds names to a list of monitored variables; it can also remove
names from the list. If the name of a variable in the current class or method is
in the list, then trace results is turned on for any assignment, loop, or parse
clause that assigns a new value to the named variable.

Variable names are specified by listing them after the var keyword. Each name
may be optionally prefixed by a + or a - sign. A + sign indicates that the vari-
able is to be added to the list of monitored variables (the default), and a - sign
indicates that the variable is to be removed from the list. Blanks may be added
before and after variable names and signs to separate the tokens and to improve
readability. For example:

trace var a b c

-- now variables a, b, and c will be traced

trace var -b -c d
-- now variables a and d will be traced

Notes:

1. Names in the list following the var keyword are simple symbols that name
variables in the current class or current method. The variables may be
properties, method arguments, or local variables, and may be of any type,
including arrays. The names are not case-sensitive; any variables whose
names match, independent of case, will be monitored.

2. No variable name can appear more than once in the list on one trace var
instruction. However, it is not an error to add the name of a variable which
does not exist or is not then assigned a value. Similarly, it is not an error to
remove a name which is not currently being monitored.

94

3. One or more trace var instructions (along with one other trace instruc-
tion) are allowed before the first method in a class. They all modify an
initial list of monitored variables which is then used for all methods in the
class. Similarly, trace var instructions are allowed before the first class in a
program, in which case they apply to all classes (except interface classes).

4. Other trace instructions do not affect the list of monitored variables. The
trace off instruction may be used to turn off tracing completely; in this
case trace var (with or without any variable names) will then turn the
tracing of variables back on, using the current (or modified) variable list.

5. For a parse instruction, only monitored variables have their assignments
traced (unless trace results is already in effect).

3.22.3 The format of trace output

Trace output is either clauses from the program being traced, or results (such
as the results from expressions).

The first clause or result traced on any line will be preceded by its line number
in the program; this is right-justified in a space which allows for the largest line
number in the program, plus one blank. Following clauses or results from the
same line are preceded by white space of the same width; however, any change
of line number causes the line number to be included.

Clauses that are traced will be displayed with the formatting (indention) and
layout used in the original source stream for the program, starting with the first
character of the first token of the clause.

Results (if requested) are converted to a string for tracing if necessary, are not
indented, and have a double quote prefixed and suffixed so that leading and
trailing blanks are apparent; if, however, the result being traced is null (see
page [[03) then the string “[null]” is shown (without quotes). For results with
an associated name (the values assigned to local variables, method arguments,
or properties in the current class), the name of the result precedes the data,
separated by a single blank.

For clarity, implementations may replace “control codes” in the encoding of re-
sults (for example, EBCDIC values less than "\x40’, or Unicode values less than
"\x20") by a question mark (”?”). All lines displayed during tracing have a three
character tag to identify the type of data being traced. This tag follows the line
number (or the space for a line number), and is separated from the line number
by a single blank. The traced clause or result follows the tag, after another blank.
The identifier tags are listed in table .

If a trace line is produced in a different context (program or thread) from the
preceding trace line (if any) then a trace context line is shown. This shows the
name of the program that produced the trace line, and also the name of the
thread (and thread group) of the context.

The thread group name is not shown if it is main, and in this case the thread
name is then also suppressed if its name is main.

95

TABLE 8: Trace identifier tags

*=%
Identifies the first line of the source of a single clause, i.e., the data actually in the pro-
gram.

*=%
Identifies a continuation line from the source of a single clause. Continuations may
be due to the use of a continuation character (see page [[§) or to the use of a block
comment (see page [3) which spans more than one line.

>a>
Identifies a value assigned to a method argument of the current method. The name of
the argument is included in the trace.

>p>
Identifies a value assigned to a property. The name of the property is included in the
trace if the property is in the current class.

>v>
Identifies a value assigned to a local variable in the current method. The name of the
variable is included in the trace.

»>
Identifies the result of an expression evaluation that is not used for an assignment (for
example, an argument expression in a method call).

+++
Reserved for error messages that are not supplied by the environment underlying the
implementation.

*->

The interactive trace prompt.

Examples: If the following instructions, starting on line 53 of a 120-line program,
were executed:

trace all
if 1=1 then say 'Hello'
else say 'i<>1'
say -
"A continued line'

the trace output (if i were 1) would be:
54 x=x if i=1

*=% then

*=x% say 'Hello'
56 *=x say -
57 x-x 'A continued line'

Similarly, for the 3-line program:

trace results
number=1/7
parse number before '.' after

the trace output would be:

2 *=x number=1/7
>v> number "0.142857143"

3 *=x parse number before '.' after
>v> before "0"
>v> after "142857143"

96

3.22.4 Interactive trace prompt

Typing '?” on the interactive trace prompt shows the interactive trace capabili-
ties:
*-> 7
Experimental interactive trace :
press [Enter] to trace interactively

type '=' to reinterpret current clause
type '-[n]' to show previous n clause(s), shows current clause if n
is absent
type '+[n]' to show next n clause(s), shows next clause if n {is
absent

type 'trace off' to stop tracing
any other clause entered must be either an assignment or a SAY

instruction
Xk =>

Notes:

1. Trace output is written to an implementation-defined output stream (typ-
ically the ”standard error” output stream, which lets it be redirected to a
destination separate from the default destination for output which is used
by the say instruction).

2. In some implementations, the use of trace instructions may substantially
increase the size of classes and the execution time of methods affected by
tracing. &

3. With some implementations it may be possible to switch tracing on exter-
nally, without requiring modification to the program.

61 the reference implementation, options notrace may be used to disable all trace instructions and hence ensure that tracing
overhead is not accidentally incurred.

97

Program structure and concepts

A NetRexx program is a collection of clauses (see page [[3) derived from a sin-
gle implementation-defined source stream (such as a file). When a program is
processed by a language processor B it defines one or more classes. Classes are
usually introduced by the class instruction (see page p5), but if the first is a
standard class, intended to be run as a stand-alone application, then the class
instruction can be omitted. In this case, NetRexx defines an implied class and
initialization method that will be used.

The implied class and method permits the writing of “low boilerplate” pro-
grams, with a minimum of syntax. The simplest, documented, NetRexx pro-
gram that has an effect might therefore be:

Example:

/* This is a very simple NetRexx program x*/
say 'Hello World!'’

This is equivalent to the “complete boilerplate” program:

Example:

class hello
method main(args=String[]) static
/* This i1s a very simple NetRexx program x/
say 'Hello world!'

The class name (hello) defining the initialisation method (main), needs to
named identical to the base filename declaring the class (hello.nrx). This is not
a NetRexx requirement but a Java requirement.

In more detail, a NetRexx program consists of:

1. An optional prolog (package, import, and options instructions). Only one
package instruction is permitted per program.
2. One or more class definitions, each introduced by a class instruction.

A class definition comprises:

1. The class instruction which introduces the class (which may be inferred,
see below).

2. Zero or more property variable assignments, along with optional properties
instructions that can alter their attributes, and optional numeric and trace
instructions. Property variable assignments take the form of an assignment
(see page B3) , with an optional =" and expression, which may:

2Such as a compiler or interpreter.

98

* just name a property (by omitting the “=" and expression of the as-
signment), in which case it refers to a string of type Rexx

« assign a type to the property (when the expression evaluates to just a
type)

+ assign a type and initial value to the property (when the expression
returns a value).

3. Zero or more method definitions, each introduced by a method instruction
(which may be inferred if the class instruction is inferred, see below).

A method definition comprises:

« Any NetRexx instructions, except the class, method, and properties in-
structions and those allowed in the prolog (the package, import, and options
instructions).

Example:

/* A program with two classes x/
import java.applet. -- for example

class testclass extends Applet
properties public

state -- property of type 'Rexx'

i=1int -- property of type 'int'
properties constant

j=int 3 -- property initialized to '3’

method start
say 'I started’
state='start'

method stop
say 'I stopped'
state='stop'

class anotherclass
method testing
loop i=1 to 10
say '1l, 2, 3, 4..."'
if 1=7 then return
end
return

method anothertest
say 'l, 2, 3, 4'

This example shows a prolog (with just an import instruction) followed by two
classes. The first class includes two public properties, one constant property,
and two methods. The second class includes no properties, but also has two
methods.

Note that a return instruction implies no static scoping; the content of a method
is ended by a method (or class) instruction, or by the end of the source stream.
The return instruction at the end of the testing method is, therefore, unneces-
sary.

99

4.1 Program defaults

The following defaults are provided for NetRexx programs:

1. If, while parsing prolog instructions, some instruction that is not valid for
the prolog and is not a class instruction is encountered, then a default
class instruction (with an implementation-provided short name, typically
derived from the name of the source stream) is inserted. If the instruction
was not a method instruction, then a default method instruction (with a name
and attributes appropriate for the environment, such as main) is also in-
serted.

In this latter case, it is assumed that execution of the program will begin
by invocation of the default method. In other words, a “stand-alone” ap-
plication can be written without explicitly providing the class and method
instructions for the first method to be executed. An example of such a pro-
gram is given in Appendix A (see page [[68) .

In the reference implementation, the main method in a stand-alone application
is passed the words forming the command string as an array of strings of type
java.lang.String (one word to each element of the array). When the NetRExx
reference implementation provides the main method instruction by default, it also
constructs a NetRexx string of type Rexx from this array of words, with a blank
added between words, and assigns the string to the variable arg.

The command string may also have been edited by the underlying operating system
environment; certain characters may not be allowed, multiple blanks or whitespace
may have been reduced to single blanks, etc.

2. If a method ends and the last instruction at the outer level of the method
scope is not return then a return instruction is added if it could be reached.
In this case, if a value is expected to be returned by the method (due to other
return instructions returning values, or there being a returns keyword on
the method instruction), an error is reported.

3. Each class has implicit uses for RexxDate (and RexxTime), RexxStream and
RexxRexx. This provides easy access to standard Rexx I/O, date and time
methods. It favours the NetRexx Date() over Java’s Date(). To access the
latter, fully qualify the class as java.util.Date, or use the -noimplicituses
option.

Language processors may provide options to prevent, or warn of, these defaults
being applied, as desired.

4.2 Minor and Dependent classes

A minor class in NetRexx is a class whose name is qualified by the name of an-
other class, called its parent, and a dependent class is a minor class that has a link
to its parent class that allows a child object simplified access to its parent object
and its properties.

100

4.2.1 Minor classes

A minor class in NetRexx is a class whose name is qualified by the name of an-
other class, called its parent. This qualification is indicated by the form of the
name of the class: the short name of the minor class is prefixed by the name
of its parent class (separated by a period). For example, if the parent is called
Foo then the full name of a minor class Bar would be written Foo.Bar. The short
name, Bar, is used for the name of any constructor method for the class; outside
the class it can only be used to identify the class in the context of the parent class
(or from children of the minor class, see below).

The names of minor classes may be used in exactly the same way as other class
names (types) in programs. For example, a property might be declared and
initialized thus:

abar=Foo.Bar null -- this has type Foo.Bar

or, if the class has a constructor, perhaps:

abar=Foo.Bar() -- constructs a Foo.Bar object

Minor classes must be in the same program (and hence in the same package)
as their parent. They are introduced by a class instruction that specifies their
full name, for example:

class Foo.Bar extends SomeClass

Minor classes must immediately follow their parent class. B3

Minor classes may have a parent which is itself a minor class, to any depth;
the name and the positioning rules are extended as necessary. For example, the
following classes might exist in a program:

class Foo
class Foo.Bar
class Foo.Bar.Nod
class Foo.Bar.Pod
class Foo.Car

As before, the children of Foo.Bar immediately follow their parent. The list of
children of Foo can be continued after the children of Foo.Bar have all been spec-
ified.

Note that the short name (last part of the name) of a minor class may not be
the same as the short name of any of its parents (a class Foo.Bar.Foo or a class
Foo.Bar.Bar would be in error, for example). This allows minor classes to refer
to their parent classes by their short name without ambiguity.

Constructing objects in minor classes

A parent class can construct an object of a child class in the usual manner, by
simply specifying its constructor (identified by its short name, full name, or

3This allows compilers that generate Java source code to preserve line numbering.

101

qualified name). For example, a method in the Foo.Bar class above could con-
struct an object of type Foo.Bar.Nod using:

anod=Nod()

(assuming the Foo.Bar.Nod class has a constructor that takes no arguments).

Similarly, minor classes can refer to the types and constructors of any of its par-
ents by simply using their short names. Hence, the Foo.Bar.Nod class could con-
struct objects of its parents’ types thus:

abar=Bar()
afoo=Foo()

(again assuming the parent classes have constructors that take no arguments).

Classes other than the parent or an immediate child must use the full name
(if necessary, qualified by the package name) to refer to a minor class or its
constructor.

4.2.2 Dependent classes

As described in the last section, minor classes provide an enhanced packag-
ing (naming) mechanism for classes, allowing classes to be structured within
packages. A stronger link between a child class and its parent is indicated by the
modifier keyword dependent on the child class, which indicates that the child is
a dependent class. For example:

class Foo.Dep dependent extends SomeClass
method Dep -- this is the constructor

An object constructed from a dependent class (a dependent object) is linked to
the context of an object of its parent type (its parent object). The linkage thus
provided allows the child object simplified access to the parent object and its
properties.

In the example, an object of type Foo.Dep can only be constructed in the context
of a parent object, which must be of type Foo.

Constructing dependent objects

A parent class can construct a dependent object in the same way as when con-
structing objects of other child types; that is, by simply specifying its construc-
tor. In this case, however, the current object (this) becomes the parent object
of the newly constructed object. For example, a method in the Foo class above
could construct a dependent object of type Foo.Dep using:

adep=Dep()

(assuming the Dep class has a constructor that takes no arguments).

In general, for a class to construct an object from a dependent class, it must have
a reference to an object of the parent class (which will become the parent of

102

the new object), and the constructor must be called (by its short name) in the
context of that parent object. For example:

parentObject=Foo()
adep=parentObject.Dep()

(In the same way, the first example could have been written:
adep=this.Dep()

within the parent class the this. is implied.)

In order to subclass a dependent class, the constructor of the dependent class
must be invoked by the subclass constructor in a similar manner. In this case, a
qualified call to the usual special constructor super is used, for example:

class ASub extends Foo.Dep

method Asub(afoo=Foo0)
afoo.super()

The qualifier (afoo in the example) must be either the name of an argument
to the constructor, or the special word parent (if the classes share a common
parent class), or the short name of a parent class followed by . this (see below).
The call to super must be the first instruction in the method, as usual, and it
must be present (it will not be generated automatically by the compiler).

Access to parent objects and their properties

Dependent classes have simplified access to their parent objects and their prop-
erties. In particular:

+ The special word parent may be used to refer to the parent object of the
current object. It may appear alone in a term, or at the start of a compound
term. It can only be used in non-static contexts in a dependent class.

« In general, any of the objects in the chain of parents of a dependent ob-
ject may be referred to by qualifying the special word this with the short
name of the parent class. For example, extending the previous example, if
the class Foo.Dep.Ent was a dependent class it could contain references to
Foo.this (the parent of its parent) or Dep. this (the latter being the same as
specifying parent). If preferred, the full name or the fully qualified name
of the parent class may be used instead of the short name.

Like parent, this construct can only be used at the start of a term in non-
static contexts in a dependent class.

« As usual, properties external to the current class must always be qualified
in some way (for example, the prefix parent. can be used in a term such as
parent.aprop).

4.2.3 Restrictions

Minor classes may have any of the attributes (public, interface, efc.) of other
classes, and behave in every way like other classes, with the following restric-
tions:

103

« Ifaclassis a static class (that is, it contains only static or constant properties
and methods) then any children cannot be dependent classes (because no
object of the parent class can be constructed). Similarly, interface classes
and abstract classes cannot have dependent classes.

« Dependent classes may not be interfaces.

+ Dependent classes may not contain static or constant properties (or meth-
ods). B These must be placed in a parent which is not a dependent class.

+ Minor classes may be public only if their parent is also public. (Note that
this is the only case where more than one public class is permitted in a
program.) In general: a minor class cannot be more visible than its parent.

4.3 Special names and methods

For convenience, NetRexx provides some special names for naming commonly-
used concepts within terms. These are only recognized if there is no variable of
the same name previously seen in the current scope, as described in the section
on Terms (see page P2) . This allows the set of special words to be expanded in
the future, if necessary, without invalidating existing variables. Therefore, these
names are not reserved; they may be used as variable names instead, if desired.

There are also two ”special methods” that are used when constructing objects.

4.3.1 Special names

The following special names are allowed in NetRexx programs, and are recog-
nized independently of case. B3 With the exception of length and class, these
may only be used alone as a term or at the start of a compound term.

ask Returns a string of type Rexx, read as a line from the implementation-

defined default input stream (often the user’s “console”).
Example:

if ask='yes' then say 'OK'

ask can only appear alone, or at the start of a compound term.
asknoecho Returns a string of type Rexx, read as a line from the implementation-

defined default input stream (often the user’s “console”), without an echo
to the screen of the typed character(s).

Example:

if asknoecho='yes' then say '0OK'

asknoecho can only appear alone, or at the start of a compound term.
]

%4This restriction allows compilation for the Java platform.

65 Unless options strictcase is in effect.

66Tn the reference implementation, ask is simply a shorthand for RexxIO.Ask().

7In the reference implementation, asknoecho is shorthand for System.console().ReadPassword().

104

class The object of type Class that describes a specific type. This word is only
recognized as the second part of a compound term, where the evaluation
of the first part of the term resulted in a type or qualified type.
Example:

obj=String.class
say obj.isInterface /* would say '0' x/

digits The current setting of numeric digits (see pagel/§), returned as a string
of type Rexx. This will be one or more Arabic numerals, with no leading
blanks, zeros, or sign, and no trailing blanks or exponent. digits can only
appear alone, or at the start of a compound term.

form The current setting of numeric form (see page [/§) , returned as a string
of type Rexx. This will have either the value “scientific” or the value
“engineering”. form can only appear alone, or at the start of a compound
term.

length The length of an array (see page §) , returned as an implementation-
dependent binary type or string. This word is only recognized as the last
part of a compound term, where the evaluation of the rest of the term re-
sulted in an array of dimension 1.
Example:

foo=char([7]
say foo.length /* would say '7' x/

Note that you can get the length of a NetRexx string with the same syntax.
B

In that case, however, a length() method is being invoked.

null The empty reference. This is a special value that represents “no value” and
may be assigned to variables (or returned from methods) except those
whose type is both primitive and undimensioned. It may also be be used
in a comparison for equality (or inequality) with values of suitable type,
and may be given a type. Examples:

blob=int[3] -- 'blob' refers to array of 3 ints
blob=null -- 'blob' is still of type int[],

-- but refers to no real object
mob=Mark null -- 'mob' is type 'Mark'

The null value may be considered to represent the state of being uninitial-
ized. It can only appear as simple symbol, not as a part of a compound
term.

RC The special variable named RC holds the returncode of the last executed
command sent to the address environment. When the environment was
never addressed, RC holds the value 'RC’".

source Returns a string of type Rexx identifying the source of the current class.
The string consists of the following words, with a single blank between the
words and no trailing or leading blanks:

1. the name of the underlying environment (e.g., Java)

681 Inless options strictargs is in effect.

105

2. either method (if the term is being used within a method) or class (if
the term is being used within a property assignment, before the first
method in a class)

3. animplementation-dependent representation of the name of the source
stream for the class (e.g., Fred.nrx).

source can only appear alone, or at the start of a compound term.

sourceline The line number of the first token of the current clause in the

NetRexx program, returned as a string of type Rexx. This will be one or
more Arabic numerals, with no leading blanks, zeros, or sign, and no trail-
ing blanks or exponent. sourceline can only appear alone, or at the start of
a compound term.

super Returns a reference to the current object, with a type that is the type of

this

the class that the current object’s class extends. This means that a search for
methods or properties which super qualifies will start from the superclass
rather than in the current class. This is used for invoking a method or prop-
erty (in the superclass or one of its superclasses) that has been overridden
in the current class. Example:
method printit(x)

say 'it' -- modification

super.printit(x) -- now the usual processing

If a property being referenced is in fact defined by a superclass of the cur-
rent class, then the prefix “super.” is perhaps the clearest way to indicate
that name refers to a property of a superclass rather than to a local variable.
(You could also qualify it by the name of the superclass.) super can only
appear alone, or at the start of a compound term.

Returns a reference to the current object. When a method is invoked, for
example in:

word=Rexx "hello" -- 'word' refers to "hello"
say word.substr(3) -- invokes substr on "hello"

then the method substr in the class Rexx is invoked, with argument "3”, and
with the properties of the value (object) “hello” available to it. These prop-
erties may be accessed simply by name, or (more explicitly) by prefixing
the name with “this.”. Using “this.” can make a method more readable,
especially when several objects of the same type are being manipulated in
the method. this can only appear alone, or at the start of a compound term.

trace The current trace (see page P2) setting, returned as a NetRexx string. This

will be one of the words:
off var methods all results
(var is returned when clause tracing is off but variable tracing has then

been turned on using a trace varinstruction.) trace can only appear alone,
or at the start of a compound term.

version Returns a string of type Rexx identifying the version of the NetRexx

language in effect when the current class was processed. The string con-
sists of the following words, with a single blank between the words and no
trailing or leading blanks:

106

1. A word describing the language. The first seven letters will be the char-
acters NetRexx, and the remainder may be used to identify a particular
implementation or language processor. This word may not include any
periods.

2. The language level description, which must be a number with no sign
or exponential part. For example, ” 4.05-GA” is the language level of
this definition.

3. Three words describing the language processor release date in the
same format as the default for the Rexx “date()” function. & For ex-
ample, “22 May 2009”.

version can only appear alone, or at the start of a compound term.

4.3.2 Special methods

Constructors (methods used for constructing objects) in NetRexx must invoke
a constructor of their superclass before making any modifications to the current
object (or invoke another constructor in the current class).

This is simplified and made explicit by the provision of the special method
names super and this, which refer to constructors of the superclass and cur-
rent class respectively. These special methods are only recognized when used
as the first, method call, instruction in a constructor, as described in Methods
and constructors (see page 7)) . Their names will be recognized independently
of case.

In addition, NetRexx provides special constructor methods for the primitive
types that allow binary construction of primitives. These are described in Bi-
nary values and arithmetic (see page [29).

4.4 JavaBean Support

This chapter describes the indirect properties feature.

The intention of this feature is to make it easier to write a certain kind of class
known as a JavaBean. Almost all JavaBeans will have properties, which are data
items that a user of a JavaBean is expected to be able to customize (for exam-
ple, the text on a pushbutton). The names and types of the properties of a Jav-
aBean are inferred from “design patterns” (in this context, conventions for nam-
ing methods) or from PropertyDescriptor objects associated with the JavaBean.

The JavaBean properties do not necessarily correspond to instance variables in
the class - although very often they do. The JavaBean specification does not
guarantee that JavaBean properties that can be set can also be inspected, nor

does it describe how ambiguities of naming and method signatures are to be
handled.

69 As defined in American National Standard for Information Technology - Programming Language REXX, X3.274-
1996:, American National Standards Institute, New York, 1996. See also Date () on page [[61].
"OUnless options strictcase is in effect.

107

The NetRexxC compiler allows a more rigorous treatment of JavaBean proper-
ties, by allowing an optional attribute of properties in a class that declares them
to be indirect properties. Indirect properties are properties of a known type that
are private to the class, but which are expected to be publicly accessible indi-
rectly, though certain conventional method calls.

Declaring properties to be indirect offers the following advantages:

« For many simple cases, the access methods for the properties can be gen-
erated automatically; there is no need to explicitly code them in the source
file for the class. This is especially helpful for Indexed Properties (where
four methods are needed, in general).

» Where access methods are explicitly provided in the class, they can be
checked for correct form, signature and accessibility. This detects errors
at compile time that otherwise would only be determined by testing.

« Similarly, attention can be drawn to the presence of methods that may be
intended to be an access method for an indirect property, but will not be
recognized as such by builders.

The next section describes the use of indirect properties in more detail.

4.4.1 Indirect properties

The properties instruction (see page B3) is used to define the attributes of fol-
lowing property variables. The visibility of properties may include a new alter-
native: indirect. Properties with this form of visibility are known as indirect
properties. These are properties of a known type that are private to the class, but
which are expected to be publicly accessible indirectly, though certain conven-
tional method calls.

For example, consider the simple program:

class Sandwich extends Canvas implements Serializable
properties indirect
slices=Color.gray
filling=Color.red

method Sandwich
resize(100,30)

method paint(g=Graphics)
g.setColor(slices)
g.fillRect(0, 0, size.width, size.height)
g.setColor(filling)
g.fillRect(12, 12, size.width-12, size.height-12)

This declares the Sandwich class as having two indirect properties, called slices
and filling, both being of type java.awt.Color.

In the example, no access methods are provided for the properties, so the com-
piler will add them. By implementation-dependent convention, the names are
prefixed with verbs such as get and set, efc., and have the first character of their

108

name uppercased to form the method names. Hence, in this Java-based exam-
ple, the following four methods are added:

method getSlices returns java.awt.Color
return slices

method getFilling returns java.awt.Color
return filling

method setSlices($l=java.awt.Color)
slices=%$1

method setFilling($2=java.awt.Color)
filling=$2

(where $1 and $2 are “hidden” names used for accessing the method argu-
ments).

Note that the indirect attribute for a property is an alternative to the public,
private, and inheritable, and shared attributes. Like private properties, indi-
rect properties can only be accessed directly by name from within the class in
which they occur; other classes can only access them using the access methods
(or other methods that may use, or have a side-effect on, the properties).

Indirect properties may be constant (implying that only a get method is gen-
erated or allowed, though the private property may be changed by methods
within the class) or transient (see page Bf) . They may not be static or
volatile.

In detail, the rules used for generating automatic methods for a property whose
name is xxxx are as follows:

1. A method called getXxxx which returns the value of the property is gener-
ated. The returned value will have the same type as xxxx.

2. If the type of xxxx is boolean then the generated method will be called
isXxxx instead of getXxxx.

3. If the property is not constant then a method for setting the property will
also be generated. This will be called setXxxx, and take a single argument
of the same type as xxxx. This assigns the argument to the property and
returns no value.

If the property has an array type (for example, char[]), then it must only have
a single dimension. Two further methods may then be generated, according to
the rules:

1. A method called getXxxx which takes a single int as an argument and
which returns an item from the property array is generated. The returned
value will have the same type as xxxx, without the []. The integer argument
is used to index into the array.

2. Asbefore, if the result type of the method would be boolean then the name
of the method will be isXxxx instead of getXxxx.

3. If the property isnot constant then a method for setting an item in the prop-
erty array will also be generated. This will be called setXxxx, and take two
arguments: the first is an int that is used to select the item to be changed,
and the second is an undimensioned argument of the same type as xxxx. It

109

assigns the second argument to the item in the property array indexed by
the first argument, and returns no value.

For example, for an indirect property declared thus:

properties indirect
fred=foo.Bar[]

the four methods generated would be:

method getFred returns foo.Bar[]; return fred

method getFred($1l=int) returns foo.Bar; return fred[$1]
method setFred($2=foo.Bar[]); fred=$2

method setFred($3=int, $4=foo.Bar); fred[$3]=%$4

Note that in all cases a method will only be generated if it would not exactly
match a method explicitly coded in the current class.

4.4.2 Explicit provision of access methods

Often, for example when an indirect property has an on-screen representation,
it is desirable to redraw the property when the property is changed (and in
more complicated cases, there may be interactions between properties). These
and other actions will require extra processing which will not be carried out by
automatically generated methods. To add this processing the access methods
will have to be coded explicitly. In the “Sandwich” example, we only need to
supply the set methods, perhaps by adding the following to the example class
above:

method setSlices(col=Color)

slices=col -- update the property
this.repaint -- redraw the component

method setFilling(col=Color)
filling=col
this.repaint

If we add these two methods, they will no longer be added automatically (the
two get methods will continue to be provided automatically, however). Further,
since the names match possible access methods for properties that are declared
to be indirect, the compiler will check the method declaration: the method sig-
natures and return type (if any) must be correct, for example. Also, since the
names of access methods are case-sensitive (in a Java environment), you will be
warned if a method appears to be intended to be an access method but the case
of one or more letters is wrong.

Specifically, the checks carried out are as follows:
1. For methods whose names exactly match a potential access method for an
indirect property (that is, start with is, get, or set, which is then followed

by the name of an indirect property with the first character of the name
uppercased):

110

« The argument list for (signature of) the method must match one of
those that could possibly be automatically generated for the property.

+ Thereturns type (if any) must match the expected returns type for that
method.

« If the returns type is simply boolean, then the method name must start
with is. Conversely, if the method name starts with is then the returns
type must be just boolean.

« If the property is constant then the name of the method cannot start
with set.

+ A warning is given if the method is not public (the default).

2. For methods whose names match a potential access method, as above, ex-
cept in case:

+ A warning is given that the method in question may be intended to be

an indirect property access method, but will not be recognized as such
by builders.

These checks detect a wide variety of errors at compile time, hence speeding the
development of classes that use indirect properties.

4.5 Parsing templates

The parse instruction allows a selected string to be parsed (split up) and as-
signed to variables, under the control of a template.

The various mechanisms in the template allow a string to be split up by explicit
matching of strings (called patterns), or by specifying numeric positions (posi-
tional patterns - for example, to extract data from particular columns of a line
read from a character stream). Once split into parts, each segment of the string
can then be assigned to variables as a whole or by words (delimited by blanks).

This section first gives some informal examples of how the parsing template can
be used, and then defines the algorithms in detail.

4.5.1 Introduction to parsing

The simplest form of parsing template consists of a list of variable names. The
string being parsed is split up into words (characters delimited by blanks), and
each word from the string is assigned to a variable in sequence from left to right.
The final variable is treated specially in that it will be assigned whatever is left
of the original string and may therefore contain several words. For example, in
the parse instruction:

parse 'This is a sentence.' vl v2 v3

the term (in this case a literal string) following the instruction keyword is
parsed, and then: the variable v1 would be assigned the value “"This”, v2 would
be assigned the value ”is”, and v3 would be assigned the value “a sentence.”.

111

Leading blanks are removed from each word in the string before it is assigned to
a variable, as is the blank that delimits the end of the word. Thus, variables set
in this manner (v1 and v2 in the example) will never have leading or trailing
blanks, though v3 could have both leading and trailing blanks. Note that the
variables assigned values in a template are always given a new value and so
if there are fewer words in the string than variables in the template then the
unused variables will be set to the null string. The second parsing mechanism
uses a literal string in a template as a pattern, to split up the string. For example:

parse 'To be, or not to be?' wl ',' w2

would cause the string to be scanned for the comma, and then split at that point;
the variable w1 would be set to ”"To be”, and w2 is set to ” or not to be?”. Note
that the pattern itself (and only the pattern) is removed from the string. Each
section of the string is treated in just the same way as the whole string was in
the previous example, and so either section could be split up into words. Thus,
in:

parse 'To be, or not to be?' wl ',"' w2 w3 wd

w2 and w3 would be assigned the values “or” and “not”, and w4 would be
assigned the remainder: “to be?”.

If the string in the last example did not contain a comma, then the pattern would
effectively “match” the end of the string, so the variable to the left of the pattern
would get the entire input string, and the variables to the right would be set to
a null string. The pattern may be specified as a variable, by putting the variable
name in parentheses. The following instructions therefore have the same effect
as the last example:

=",

parse 'To be, or not to be?' wl (c) w2 w3 w4

The third parsing mechanism is the numeric positional pattern. This works in
the same way as the string pattern except that it specifies a column number. So:

parse 'Flying pigs have wings' x1 5 x2

would split the string at the fifth column, so x1 would be “Flyi” and x2 would
start at column 5 and so be “ng pigs have wings”. More than one pattern is
allowed, so for example:

parse 'Flying pigs have wings' x1 5 x2 10 x3

would split the string at columns 5 and 10, so x2 would be “ng pi” and x3 would
be “gs have wings”. The numbers can be relative to the last number used, so:

parse 'Flying pigs have wings' x1 5 x2 +5 x3

would have exactly the same effect as the last example; here the +5 may be
thought of as specifying the length of the string to be assigned to x2. As with
literal string patterns, the positional patterns can be specified as a variable by
putting the name of a variable, in parentheses, in place of the number. An ab-
solute column number should then be indicated by using an equals sign (”="
instead of a plus or minus sign. The last example could therefore be written:

112

start=5

length=5

data='Flying pigs have wings'

parse data x1 =(start) x2 +(length) x3

String patterns and positional patterns can be mixed (in effect the beginning of a
string pattern just specifies a variable column number) and some very powerful
things can be done with templates. The next section describes in more detail
how the various mechanisms interact.

4.5.2 Parsing definition

This section describes the rules that govern parsing. In its most general form,
a template consists of alternating pattern specifications and variable names.
Blanks may be added between patterns and variable names to separate the to-
kens and to improve readability. The patterns and variable names are used
strictly in sequence from left to right, and are used once only. In practice, vari-
ous simpler forms are used in which either variable names or patterns may be
omitted; we can therefore have variable names without patterns in between, and
patterns without intervening variable names. In general, the value assigned to
a variable is that sequence of characters in the input string between the point
that is matched by the pattern on its left and the point that is matched by the
pattern on its right. If the first item in a template is a variable, then there is an
implicit pattern on the left that matches the start of the string, and similarly if
the last item in a template is a variable then there is an implicit pattern on the
right that matches the end of the string. Hence the simplest template consists
of a single variable name which in this case is assigned the entire input string.
Setting a variable during parsing is identical in effect to setting a variable in
an assignment. The constructs that may appear as patterns fall into two cate-
gories; patterns that act by searching for a matching string (literal patterns),
and numeric patterns that specify an absolute or relative position in the string
(positional patterns). Either of these can be specified explicitly in the template,
or alternatively by a reference to a variable whose value is to be used as the
pattern. For the following examples, assume that the following sample string is
being parsed; note that all blanks are significant - there are two blanks after the
tirst word ”is” and also after the second comma:

'This 1s the text which, I think, 1s scanned.'

Parsing with literal patterns

Literal patterns cause scanning of the data string to find a sequence that matches
the value of the literal. Literals are expressed as a quoted string. The null string
matches the end of the data. The template:

wl ', w2 ', w3

when parsing the sample string, results in:

113

wl has the value "This is the text which”
w2 has the value " I think”
w3 has the value " 1is scanned.”

Here the string is parsed using a template that asks that each of the variables
receive a value corresponding to a portion of the original string between com-
mas; the commas are given as quoted strings. Note that the patterns themselves
are removed from the data being parsed. A different parse would result with
the template:

wl ", w2 ', w3, wah
which would result in:

wl has the value "This is the text which”
w2 has the value " I think”

w3 has the value " 1is scanned.”

w4 has the value """ (null string)

This illustrates an important rule. When a match for a pattern cannot be found
in the input string, it instead “matches” the end of the string. Thus, no match
was found for the third ’,” in the template, and so w3 was assigned the rest of the
string. w4 was assigned a null string because the pattern on its left had already
reached the end of the string. Note that all variables that appear in a template
in this way are assigned a new value.

Parsing strings into words

If a variable is directly followed by one or more other variables, then the string
selected by the patterns is assigned to the variables in the following manner.
Each blank-delimited word in the string is assigned to each variable in turn,
except for the last variable in the group (which is assigned the remainder of the
string). The values of the variables which are assigned words will have neither
leading nor trailing blanks. Thus the template:

wl w2 w3 w4 ',

would result in:

wl has the value "This'
w2 has the value "is
w3 has the value "the”

w4 has the value "text which”

n

Note that the final variable (w4 in this example) could have had both leading
blanks and trailing blanks, since only the blank that delimits the previous word
is removed from the data. Also observe that this example is not the same as
specifying explicit blanks as patterns, as the template:

wl ' w2 " w3 wg !
would in fact result in:

114

wl has the value "This’
w2 has the value "is
w3 has the value ""” (null string)

w4 has the value "the text which”

”

since the third pattern would match the third blank in the data. In general, when
a variable is followed by another variable then parsing of the input into individ-
ual words is implied. The parsing process may be thought of as first splitting
the original string up into other strings using the various kinds of patterns, and
then assigning each of these new strings to (zero or more) variables.

Use of the period as a placeholder

A period (separated from any symbols by at least one blank) acts as a place-
holder in a template. It has exactly the same effect as a variable name, except
that no variable is set. It is especially useful as a “"dummy variable” in a list of
variables, or to collect (ignore) unwanted information at the end of a string.
Thus the template:

. word4 .

would extract the fourth word (“text”) from the sample string and place it in the
variable word4. Blanks between successive periods in templates may be omit-
ted, so the template:

. word4 .

would have the same result as the last template.

Parsing with positional patterns

Positional patterns may be used to cause the parsing to occur on the basis of
position within the string, rather than on its contents. They take the form of
whole numbers, optionally preceded by a plus, minus, or equals sign which
indicate relative or absolute positioning. These may cause the matching opera-
tion to “back up” to an earlier position in the data string, which can only occur
when positional patterns are used. Absolute positional patterns: A number in
a template that is not preceded by a sign refers to a particular (absolute) char-
acter column in the input, with 1 referring to the first column. For example, the
template:

sl 10 s2 20 s3

results in:

n

sl has the value "This is
s2 has the value "the text w”
s3 has the value "hich, I think, 1is scanned.”

Here s1 is assigned characters from the first through the ninth character, and
s2 receives input characters 10 through 19. As usual the final variable, s3, is
assigned the remainder of the input.

115

An equals sign (”=") may be placed before the number to indicate explicitly
that it is to be used as an absolute column position; the last template could have
been written:

sl =10 s2 =20 s3

A positional pattern that has no sign or is preceded by the equals sign is known
as an absolute positional pattern. Relative positional patterns: A number in a
template that is preceded by a plus or minus sign indicates movement relative
to the character position at which the previous pattern match occurred. This is
a relative positional pattern. If a plus or minus is specified, then the position used
for the next match is calculated by adding (or subtracting) the number given to
the last matched position. The last matched position is the position of the first
character of the last match, whether specified numerically or by a string.

For example, the instructions:
parse '123456789' 3 wl +3 w2 3 w3

result in

wl has the value '"345"
w2 has the value "6789"
w3 has the value "3456789"

The +3 in this case is equivalent to the absolute number 6 in the same posi-
tion, and may also be considered to be specifying the length of the data string
to be assigned to the variable w1. This example also illustrates the effects of a
positional pattern that implies movement to a character position to the left of
(or to) the point at which the last match occurred. The variable on the left is
assigned characters through the end of the input, and the variable on the right
is, as usual, assigned characters starting at the position dictated by the pattern.
A useful effect of this is that multiple assignments can be made:

parse x 1 wl 1 w2 1 w3

This results in assigning the (entire) value of x to w1, w2, and w3. (The first "1”
here could be omitted as it is effectively the same as the implicit starting pattern
described at the beginning of this section.) If a positional pattern specifies a
column that is greater than the length of the data, it is equivalent to specifying
the end of the data (i.e., no padding takes place). Similarly, if a pattern specifies
a column to the left of the first column of the data, this is not an error but instead
is taken to specify the first column of the data. Any pattern match sets the “last
position” in a string to which a relative positional pattern can refer. The “last
position” set by a literal pattern is the position at which the match occurred,
that is, the position in the data of the first character in the pattern. The literal
pattern in this case is not removed from the parsed data. Thus the template:

0 -1 x +1
will:

1. Find the first comma in the input (or the end of the string if there is no
comma).

116

2. Back up one position.
3. Assign one character (the character immediately preceding the comma or
end of string) to the variable x.

One possible application of this is looking for abbreviations in a string. Thus the
instruction:
/* Ensure options have a leading blank and are

in uppercase before parsing. x/
parse (' ‘'opts).upper ' PR' +1 prword '

will set the variable prword to the first word in opts that starts with "PR” (in
any case), or will set it to the null string if no such word exists. Notes:

1. The positional patterns +0 and -0 are valid, have the same effect, and may
be used to include the whole of a previous literal (or variable) pattern
within the data string to be parsed into any following variables.

2. As illustrated in the last example, patterns may follow each other in the
template without intervening variable names. In this case each pattern is
obeyed in turn from left to right, as usual.

3. There may be blanks between the sign in a positional pattern and the num-
ber, because NetRexx defines that blanks adjacent to special characters are
removed.

Parsing with variable patterns

It is sometimes desirable to be able to specify a pattern by using the value of
a variable instead of a fixed string or number. This may be achieved by placing
the name of the variable to be used as the pattern in parentheses (blanks are not
necessary either inside or outside the parentheses, but may be added if desired).
This is called a variable reference; the value of the variable is converted to string
before use, if necessary. If the parenthesis to the left of the variable name is not
preceded by an equals, plus, or minus sign (”=", ”+”, or ”-”) the value of the
variable is then used as though it were a literal (string) pattern. The variable
may be one that has been set earlier in the parsing process, so for example:
input="L/look for/1 10"

parse input verb 2 delim +1 string (delim) rest

will set:

verb to 'L’

delim to '/’

string to '"look for’
rest to '1 10’

If the left parenthesis is preceded by an equals, plus, or minus sign then the
value of the variable is used as an absolute or relative positional pattern (instead
of as a literal string pattern). In this case the value of the variable must be a
non-negative whole number, and (as before) it may have been set earlier in the
parsing process.

117

4.6 Numbers and Arithmetic

NetRexx arithmetic attempts to carry out the usual operations (including addi-
tion, subtraction, multiplication, and division) in as “natural” a way as possible.
What this really means is that the rules followed are those that are convention-
ally taught in schools and colleges. However, it was found that unfortunately the
rules used vary considerably (indeed much more than generally appreciated)
from person to person and from application to application and in ways that are
not always predictable. The NetRexx arithmetic described here is therefore a
compromise which (although not the simplest) should provide acceptable re-
sults in most applications.

4.6.1 Introduction

Numbers can be expressed in NetRexx very flexibly (leading and trailing blanks
are permitted, exponential notation may be used) and follow conventional syn-
tax. Some valid numbers are:

12 /* A whole number */
'-76' /* A signed whole number */
12.76 /* Some decimal places */

"+ 0.003 ' /* Blanks around the sign, etc. */
17. /* Equal to 17 x/
"5 /* Equal to 0.5 x/

4E+9 /* Exponential notation */
0.73e-7 /* Exponential notation */

(Exponential notation means that the number includes a sign and a power of
ten following an “E” that indicates how the decimal point will be shifted. Thus
4E+9 above is just a short way of writing 4000000000, and 0.73e-7 is short for
0.000000073.) The arithmetic operators include addition (indicated by a ”+”),
subtraction (”-”), multiplication (”*”), power (”**”), and division (”/”). There
are also two further division operators: integer divide (”%”) which divides and
returns the integer part, and remainder (”//”) which divides and returns the re-
mainder. Prefix plus (”+”) and prefix minus (”-”) operators are also provided.
When two numbers are combined by an operation, NetRexx uses a set of rules
to define what the result will be (and how the result is to be represented as a

character string). These rules are defined in the next section, but in summary:

+ Results will be calculated with up to some maximum number of significant
digits. That is, if a result required more than 9 digits it would normally
be rounded to 9 digits. For instance, the division of 2 by 3 would result
in 0.666666667 (it would require an infinite number of digits for perfect
accuracy).

You can change the default of 9 significant digits by using the numeric
digits instruction. This lets you calculate using as many digits as you need
- thousands, if necessary.

« Except for the division and power operators, trailing zeros are preserved
(this is in contrast to most electronic calculators, which remove all trailing

118

zeros in the decimal part of results). So, for example:

2.40 + 2 => 4.40
2.40 - 2 => 0.40
2.40 x 2 => 4.80
2.40 / 2 => 1.2

This preservation of trailing zeros is desirable for most calculations (and
especially financial calculations). If necessary, trailing zeros may be easily
removed with the strip method (see page [[54) , or by division by 1.

A zero result is always expressed as the single digit "0’

Exponential form is used for a result depending on its value and the setting
of numeric digits (the defaultis 9 digits). If the number of places needed
before the decimal point exceeds this setting, or the absolute value of the
number is less than 0.000001, then the number will be expressed in expo-
nential notation; thus

le+6 * le+6

results in “1E+12"” instead of “1000000000000”, and
1 / 3E+10

results in ”3.33333333E-11" instead of “0.0000000000333333333".

Any mixture of Arabic numerals (0-9) and Extra digits (see page [§) can
be used for the digits in numbers used in calculations. The results are ex-
pressed using Arabic numerals.

4.6.2 Definition

This

definition describes arithmetic for NetRexx strings (type Rexx). The arith-

metic operations are identical to those defined in the ANSI standard for Rexx.

4l

Numbers

A number in NetRexx is a character string that includes one or more decimal
digits, with an optional decimal point. The decimal point may be embedded
in the digits, or may be prefixed or suffixed to them. The group of digits (and
optional point) thus constructed may have leading or trailing blanks, and an
optional sign (”+” or ”-") which must come before any digits or decimal point.
The sign may also have leading or trailing blanks. Thus:

sign =+ | -
digit = 0|12 |314|5|6|1718129
digits = digit [digit]...
numeric ::= digits . [digits]
| [.] digits
number = [blank]... [sign [blank]...]

numeric [blank]...

71 American National Standard for Information Technology - Programming Language REXX, X3.274-1996, American
National Standards Institute, New York, 1996.

119

where if the implementation supports extra digits (see page [[§) these are
also accepted as digits, providing that they represent values in the range zero
through nine. In this case each extra digit is treated as though it were the cor-
responding character in the range 0-9. Note that a single period alone is not a
valid number.

Precision

The maximum number of significant digits that can result from an arithmetic
operation is controlled by the digits keyword on the numeric instruction (see

page ['7) :
numeric digits [expression];

The expression is evaluated and must result in a positive whole number. This
defines the precision (number of significant digits) to which arithmetic calcula-
tions will be carried out; results will be rounded to that precision, if necessary.
If no expression is specified, then the default precision is used. The default pre-
cision is 9, that is, all implementations must support at least nine digits of preci-
sion. An implementation-dependent maximum (equal to or larger than 9) may
apply: an attempt to exceed this will cause execution of the instruction to ter-
minate with an exception. Thus if an algorithm is defined to use more than 9
digits then if the numeric digits instruction succeeds then the computation will
proceed and produce identical results to any other implementation. Note that
numeric digits may setvaluesbelow the default of nine. Small values, however,
should be used with care - the loss of precision and rounding thus requested
will affect all NetRexx computations, including (for example) the computation
of new values for the control variable in loops.

In the remainder of this section, the notation digits refers to the current setting
of numeric digits. This setting may also be referred to in expressions in pro-
grams by using the digits special word (see page [[04) .

4.6.3 Arithmetic operators

NetRexx arithmetic is effected by the operators ”+", ”-”, ”*”,” /”,”%"”,” [|”,and
7#*” (add, subtract, multiply, divide, integer divide, remainder, and power)
which all act upon two terms, together with the prefix operators ”+” and ”-”
(plus and minus) which both act on a single term. The result of all these opera-
tions is a NetRexx string, of type Rexx. This section describes the way in which
these operations are carried out. Before every arithmetic operation, the term or
terms being operated upon have any extra digits converted to the corresponding
Arabic numeral (the digits 0-9). They then have leading zeros removed (noting
the position of any decimal point, and leaving just one zero if all the digits in
the number are zeros) and are then truncated to digits+1 significant digits 2 (if
necessary) before being used in the computation. The operation is then carried

72 That is, to the precision set by numeric digits, plus one extra “guard” digit.

120

out under up to double that precision, as described under the individual opera-
tions below. When the operation is completed, the result is rounded if necessary
to the precision specified by the numeric digits instruction. Rounding is done
in the “traditional” manner, in that the extra (guard) digit is inspected and val-
ues of 5 through 9 are rounded up, and values of 0 through 4 are rounded down.
[A conventional zero is supplied preceding a decimal point if otherwise there
would be no digit before it. Trailing zeros are retained for addition, subtraction,
and multiplication, according to the rules given below, except that a result of
zero is always expressed as the single character "0’. For division, insignificant
trailing zeros are removed after rounding.

The format method (see page [48) is defined to allow a number to be repre-
sented in a particular format if the standard result provided by NetRexx does
not meet requirements.

Arithmetic operation rules - basic operators

The basic operators (addition, subtraction, multiplication, and division) oper-
ate on numbers as follows:

Addition and subtraction If either number is zero then the other number,
rounded to digits digits if necessary, is used as the result (with sign ad-
justment as appropriate). Otherwise, the two numbers are extended on the
right and left as necessary up to a total maximum of digits+1 digits.

The number with smaller absolute value may therefore lose some or all
of its digits on the right. @ The numbers are then added or subtracted as
appropriate. For example:

XXXX XXX + YY.YVYVYVYY
becomes:

XXXX . XXX00
+ 00yy.yyyyy

22272 .2Z2Z2ZZ

.sumadd The result is then rounded to digits digits if necessary, taking into
account any extra (carry) digit on the left after an addition, but otherwise
counting from the position corresponding to the most significant digit of
the terms being added or subtracted. Finally, any insignificant leading ze-
ros are removed. The prefix operators are evaluated using the same rules;
the operations ”+number” and “-number” are calculated as "0+number”
and “0-number”, respectively.

Multiplication The numbers are multiplied together (”long multiplication”)
resulting in a number which may be as long as the sum of the lengths of
the two operands. For example:

XXX XXX % YY.YYYYY

73 Even/odd rounding would require the ability to calculate to arbitrary precision (that is, to a precision not governed
by the setting of numeric digits) atany time and is therefore not the mechanism defined for NetRexx.
74In the example, the number yy.yyyyy would have three digits truncated if digits were 5.

121

becomes:

222272 .2222Z7Z7Z7Z

and the result is then rounded to digits digits if necessary, counting from
the first significant digit of the result.

Division For the division:

YYY [/ XXXXX

the following steps are taken: first, the number "yyy” is extended with ze-
ros on the right until it is larger than the number “"xxxxx” (with note being
taken of the change in the power of ten that this implies). Thus in this ex-
ample, "yyy” might become “yyy00”. Traditional long division then takes
place, which can be written:

XXXXx | yyyo0o

The length of the result (“zzzz"”) is such that the rightmost “z” will be at
least as far right as the rightmost digit of the (extended) ”y” number in the

”_ .’

example. During the division, the ”y” number will be extended further as
necessary, and the “z” number (which will not include any leading zeros)
may increase up to digits+1 digits, at which point the division stops and
the result is rounded. Following completion of the division (and rounding

if necessary), insignificant trailing zeros are removed.
Examples:

/* With "numeric digits 5' %/

12+7.00 == 19.00
1.3-1.07 == 0.23
1.3-2.07 == -0.77
1.20%3 == 3.60
7%3 = 21
0.9%0.8 == 0.72
1/3 == 0.33333
2/3 == 0.66667
5/2 == 2.5
1/10 == 0.1
12/12 == 1

8.0/2 == 4

Note: With all the basic operators, the position of the decimal point in the terms
being operated upon is arbitrary. The operations may be carried out as integer
operations with the exponent being calculated and applied afterwards. There-
fore the significant digits of a result are not in any way dependent on the position
of the decimal point in either of the terms involved in the operation.

122

Arithmetic operation rules - additional operators

The operation rules for the power (”**”), integer division (”%"), and remainder
(”/]”) operators are as follows:

Power The "**” (power) operator raises a number (on the left of the operator)

to a power (on the right of the operator). The term on the right is rounded
to digits digits (if necessary), and must, after any rounding, be a whole
number, which may be positive, negative, or zero. If negative, the absolute
value of the power is used, and then the result is inverted (divided into 1).
For calculating the power, the number is effectively multiplied by itself for
the number of times expressed by the power, and finally trailing zeros are
removed (as though the result were divided by one). In practice (see note
below for the reasons), the power is calculated by the process of left-to-
right binary reduction. For “x**n”: “n” is converted to binary, and a tem-
porary accumulator is set to 1. If “n” has the value 0 then the initial calcu-
lation is complete. Otherwise each bit (starting at the first non-zero bit) is
inspected from left to right. If the current bit is 1 then the accumulator is
multiplied by “x”. If all bits have now been inspected then the initial calcu-
lation is complete, otherwise the accumulator is squared by multiplication
and the next bit is inspected. When the initial calculation is complete, the
temporary result is divided into 1 if the power was negative.
The multiplications and division are done under the normal arithmetic
operation rules, detailed earlier in this section, using a precision of dig-
its+elength+1 digits. Here, elength is the length in decimal digits of the
integer part of the whole number “n” (i.e., excluding any sign, decimal part,
decimal point, or insignificant leading zeros, as though the operation n%1
had been carried out and any sign removed). Finally, the result is rounded
to digits digits, if necessary, and insignificant trailing zeros are removed.

Integer division The %" (integer divide) operator divides two numbers and
returns the integer part of the result. The result returned is defined to be
that which would result from repeatedly subtracting the divisor from the
dividend while the dividend is larger than the divisor. During this subtrac-
tion, the absolute values of both the dividend and the divisor are used: the
sign of the final result is the same as that which would result if normal divi-
sion were used. The result returned will have no fractional part (that is, no
decimal point or zeros following it). If the result cannot be expressed ex-
actly within digits digits, the operation is in error and will fail - that is, the
result cannot have more digits than the current setting of numeric digits.
For example, 10000000000%3 requires ten digits to express the result ex-
actly (3333333333) and would therefore fail if digits were 9 or smaller.

Remainder The ”//” (remainder) operator will return the remainder from in-
teger division, and is defined as being the residue of the dividend after the
operation of calculating integer division as just described. The sign of the
remainder, if non-zero, is the same as that of the original dividend. This
operation will fail under the same conditions as integer division (that is, if
integer division on the same two terms would fail, the remainder cannot

123

be calculated).

Examples:

/* Again with 'numeric digits 5' %/
2%%x3 == 8
2%x%x-3 == 0.125
1.7%x8 == 69.758
2\%3 = 0
2.1//3 = 2.1
10\%3 = 3
10//3 = 1
-10//3 = -1
10.2//1 = 0.2
10//0.3 = 0.1
3.6//1.3 = 1.0
Notes:

1. A particular algorithm for calculating powers is described, since it is ef-
ficient (though not optimal) and considerably reduces the number of ac-
tual multiplications performed. It therefore gives better performance than
the simpler definition of repeated multiplication. Since results could pos-
sibly differ from those of repeated multiplication, the algorithm must be
defined here so that different implementations will give identical results
for the same operation on the same values. Other algorithms for this (and
other) operations may always be used, so long as they give identical results
to those described here.

2. The integer divide and remainder operators are defined so that they may
be calculated as a by-product of the standard division operation (described
above). The division process is ended as soon as the integer result is avail-
able; the residue of the dividend is the remainder.

Numeric comparisons

Any of the comparative operators (see page B7) may be used for comparing nu-
meric strings. However, the strict comparisons (for example, “=="and ">>")
are not numeric comparative operators and should not normally be used for
comparing numbers, since they compare from left to right and leading and trail-
ing blanks (and leading zeros) are significant for these operators. Numeric com-
parison, using the normal comparative operators, is effected by subtracting the
two numbers (calculating the difference) and then comparing the result with
‘0’ - that is, the operation:

A?B
where ”?” is any normal comparative operator, is identical to:
(A-B) ? 0

It is therefore the difference between two numbers, when subtracted under
NetRexx subtraction rules, that determines their equality.

124

4.6.4 Exponential notation

The definition of numbers above (see page [T9) describes “pure” numbers, in
the sense that the character strings that describe numbers can be very long. Ex-
amples:

say 10000000000 * 10000000000
/* would display: 100000000000000000000 x*/

say 0.00000000001 * 0.00000000001
/* would display: 0.0000000000000000000001 =/

For both large and small numbers some form of exponential notation is useful,
both to make such long numbers more readable and to make evaluation possible
in extreme cases. In addition, exponential notation is used whenever the “pure”
form would give misleading information. For example:

numeric digits 5
say 54321x54321

would display 2950800000 if long form were to be used. This is misleading, as
it appears that the result is an exact multiple of 100000, and so NetRexx would
express the result in exponential notation, in this case “2.9508E+9”. The defi-
nition of number (see above) is therefore extended by replacing the description
of numeric by the following;:

mantissa ::= digits . [digits]
| [.] digits
numeric ::= mantissa [E sign digits]

In other words, the numeric part of a number may be followed by an “E” (indi-
cating an exponential part), a sign, and an integer following the sign that rep-
resents a power of ten that is to be applied. The "E” may be in uppercase or
lowercase. Note that no blanks are permitted within this part of a number, but
the integer may have leading zeros. Examples:

12E+11 = 1200000000000
12E-5 = 0.00012
12e+4 = 120000

All valid numbers may be used as data for arithmetic. The results of calcula-
tions will be returned in exponential form depending on the setting of numeric
digits. If the number of places needed before the decimal point exceeds digits,
or if the absolute value of the result is less than 0.000001, then exponential form
will be used. The exponential form generated by NetRexx always has a sign fol-
lowing the “E”. If the exponent is 0 then the exponential part is omitted - that is,
an exponential part of “E+0” will never be generated. If the default format for a
number is not satisfactory for a particular application, then the format method
may be used to control its format. Using this, numbers may be explicitly con-
verted to exponential form or even forced to be returned in “pure” form. Dif-
ferent exponential notations may be selected with the numeric form instruction
(see page /) . This instruction allows the selection of either scientific or engi-
neering notation. Scientific notation adjusts the power of ten so there is a single

125

non-zero digit to the left of the decimal point. Engineering notation causes pow-
ers of ten to be expressed as a multiple of three - the integer part may therefore
range from 1 through 999. Examples:

numeric form scientific
say 123.45 x lell
/* would display: 1.2345E+13 */

numeric form engineering
say 123.45 x lell
/* would display: 12.345E+12 */

The default exponential notation is scientific.

4.6.5 Whole numbers

Within the set of numbers understood by NetRexx it is useful to distinguish the
subset defined as whole numbers.

A whole number in NetRexx is a number that has a decimal part which is all zeros
(or that has no decimal part).

4.6.6 Numbers used directly by NetRexx

As discussed above, the result of any arithmetic operation is rounded (if nec-
essary) according to the setting of numeric digits. Similarly, when a number
(which has not necessarily been involved in an arithmetic operation) is used
directly by NetRexx then the same rounding is also applied, just as though the
operation of adding the number to 0 had been carried out. After this operation,
the integer part of the number must have no more digits than the current setting
of numeric digits.

In the following cases, the number used must be a whole number and an im-
plementation restriction on the largest number that can be used may apply:

» positional patterns, including variable positional patterns, in parsing tem-
plates (see page [[T1])
« the power value (right hand operand) of the power operator (see page

[23).

« the values of exprr and exprf (following the for keyword) in the loop in-
struction (see page b3)

+ the value of exprd (following the digits keyword) in the numeric instruc-
tion (see page[’7) .

Implementation minimum: A minimum length of 9 digits must be supported
for these uses of whole numbers by a NetRexx language processor.

126

4.6.7 Implementation independence

The NetRexx arithmetic rules are defined in detail, so that when a given pro-
gram is run the results of all computations are sufficiently defined that the same
answer will result for all correct implementations. Differences due to the un-
derlying machine architecture will not affect computations. This contrasts with
most other programming languages, and with binary arithmetic (see page [27)
in NetRexx, where the result obtained may depend on the implementation be-
cause the precision and algorithms used by the language processor are defined
by the implementation rather than by the language.

4.6.8 Exceptions and errors

The following exceptions and errors may be signalled during arithmetic:

« Divide exception This exception will be signalled if division by zero was at-
tempted, or if the integer result of an integer divide or remainder operation
had too many digits.

+ Overflow/Underflow exception This exception will be signalled if the ex-
ponential part of a result (from an operation that is not an attempt to divide
by zero) would exceed the range that can be handled by the language pro-
cessor, when the result is formatted according to the current settings of
numeric digits and numeric form. The language defines a minimum ca-
pability for the exponential part, namely exponents whose absolute value
is at least as large as the largest number that can be expressed as an exact
integer in default precision. Thus, since the default precision is nine, im-
plementations must support exponents in the range -999999999 through
999999999.

« Insufficient storage Storage is needed for calculations and intermediate re-
sults, and on occasion an arithmetic operation may fail due to lack of stor-
age. This is considered an operating environment error as usual, rather
than an arithmetical exception.

In the reference implementation, the exceptions and error types used for these three cases
are DivideException, ExponentOuverflowException, and OutOfMemoryError, re-
spectively.

4.7 Binary values and operations

By default, arithmetic and string operations in NetRexx are carried out using the
NetRexx string class, Rexx, which offers the robust set of operators described in
Expressions and operators (see page B3).

NetRexx implementations, however, may also provide primitive datatypes, as
described in Types and Classes (see page P0). These primitive types are used for
compact storage of numbers and for fast binary arithmetic, features which are
built-in to the hardware of most computers.

127

To make use of binary arithmetic, a class is declared to be a binary class (see page
p7) by using the binary keyword on the class instruction. In such a class, lit-
eral strings and numeric symbols are assigned native string or primitive types,
rather than NetRexx types, where appropriate, and native binary operations are
used to implement operators where possible, as detailed below. Implementa-
tions may also provide a keyword on the options (see page [/Y) instruction that
indicates that all classes in a program are binary classes.

Alternatively, individual methods within a class may be declared to be a binary
method (see page [/9) by using the binary keyword on the method instruction.

Alternatively, individual do groups within a method may be declared to be a do
binary group (see page pg) by using the binary keyword on the do instruction.

Binary classes and methods should be used with care. Although binary arith-
metic can have a considerable performance advantage over arithmetic that is
not implemented in hardware, it can give incorrect or unexpected results. In
particular, whole numbers (integers) are often held in fixed-sized data areas
(of 8, 16, 32, or 64 bits), and overflowing the data area during a calculation can
result in a positive number becoming negative and vice versa. Similarly, binary
numbers that are not whole numbers (floating-point numbers) cannot exactly
represent common numbers in the decimal system (0.1, 0.2, efc.), and hence can
give unexpected results.

4.7.1 Operations in binary classes and methods

In a binary class or method, the following (and only the following) rules differ
from the usual rules:

Dyadic operations in expressions If the operands of a dyadic operator both
have primitive numeric types ™ then binary operations are carried out. The
type of the result is implementation defined, and is typically the type of the
more precise of the two operands, or of some minimum precision. ¥ Arith-
metic operations follow the usual rules of binary arithmetic, as defined for
the underlying environment of the implementation.

Note that NetRexx provides both divide and integer divide operators; in
a binary class or method, the divide operator (”/”) converts its operands
to floating-point types and returns a floating-point result, whereas the in-
teger divide operator (”%”) converts its operands to integer types and re-
turns an integer result. The remainder operator must accept both integer
and floating-point types.

Logical operations (and, or, and exclusive or) apply to all the bits of the
operands, and are not permitted on floating-point types.

Prefix operations in expressions If the operand of a prefix operator has a prim-
itive numeric type, then the type of the result is the type of the operand,

75In the reference implementation, options binary is used.

76In the reference implementation, boolean is considered to be a numeric type (having the values 0 or 1) but char is not.
Characters, and strings or arrays of characters, always use the rules defined for NetRExx strings.

77In the reference implementation, the minimum precision is 32 bits, so an int is returned for results that would otherwise be
byte or short. If both operands are boolean, however, and the operation is a logical operation, then the type of the result is boolean.

128

subject to the same minimum as dyadic operations. Prefix plus and minus
follow the rules of dyadic operators (because they are defined as being zero
plus or minus the operand) with the additional rule that if acting on a lit-
eral number (a constant in the program) then the result is also considered
to be a literal constant. Logical not (prefix “\”) does not apply to all the bits
of its operand; instead, it changes a 0 to 1 and vice versa.

Assignments In assignments where the value being assigned is the result of an
expression which comprises a string or number literal constant, the type of
the result is defined as follows:

1. Strings are given the native string type, even for a single-character lit-
eral.

2. Numbers are given the smallest possible primitive numeric type that
will contain the literal without loss of information (or minimal loss
of information for numbers with decimal or exponential parts). If this
is smaller than the implementation-defined minimum precision used
for the result of adding the literal to 0, then the type of that minimum
precision is used.

If the constant is an integer, and no primitive integer binary type has
sufficient precision to hold the number without loss of information,
then the number is treated as a literal string (that is, as though it were
enclosed in quotes). NetRexx arithmetic would then be used if it were
involved in an arithmetic operation.
These rules can apply in assignment instructions, the initial assignment to
the control variable in the loop instruction, or the assignment of a default
value to the argument of a method; the result type may define the type of
the variable (if new, or a method argument).

Control variables in loops In the loop instruction, if the control variable has a
primitive integer type, and the increment (by value) has a primitive integer
type, then binary arithmetic will be used for stepping the control variable,
following the rules for binary arithmetic in expressions described above.
Similarly, if the control variable has a primitive integer type, and the end
(to) value has a primitive integer type, then binary arithmetic will be used
for the comparison that tests for loop termination.

Numeric instruction The numeric instruction does not affect binary operations.
It has the usual effects on operations carried out using NetRexx arithmetic.

Note: At all times (whether in binary classes, binary methods, or anywhere
else) implementations may use primitive types and operations, and techniques
such as late binding of types, as an optimization providing that the results ob-
tained are identical to those defined in this language definition.

4.7.2 Binary constructors

NetRexx provides special constructors for implementation-defined primitive
types that allow bit-wise construction of primitives. These binary constructors

78In the reference implementation, this type is java.lang.String.

129

are especially useful for manipulating the binary encodings of individual char-
acters.

The binary constructors follow the same syntax as other constructors, with the
name being that of a primitive type. All binary constructors take one argument,
which must have a primitive type.

The bits of the value of the argument are extended or truncated on the left to the
same length as the bits required for the type of the constructor (following the
usual binary rules of sign extension if the argument type is a signed numeric
type), and a value with the type of the constructor is then constructed directly
from those bits and returned.

Example: This example illustrates types from the reference implementation,
with 32-bit signed integers of type int and 16-bit Unicode characters of type
char.

i=int 77 -- 1 i1s now the integer 77
c=char(i) -- ¢ is now the character 'M'
j=int(c) -- j 1s now the integer 77

Note that the conversion
j=int ¢

would have failed, as "M” is not a number.

4.8 Exceptions

Exceptional conditions, including errors, in NetRexx are handled by a mech-
anism called Exceptions. When an exceptional condition occurs, a signal takes
place which may optionally be caught by an enclosing control construct, as de-
tailed below.

An exception can be signalled by:

1. the program’s environment, when some processing error occurs (such as
running out of memory, or a problem discovered when reading or writing
a file)

2. a method called by a NetRexx program (if, for example, it is passed incor-
rect arguments)

3. the signal instruction (see page P1)) .

In all cases, the signal is handled in exactly the same way. First, execution of the
current clause ceases; no further operations within the clause will be carried
out.” Next, an object that represents the exception is constructed. The type of
the exception object is implementation-dependent, as described for the signal
instruction (see page P1)) , and defines the type of the exception. The object con-
structed usually contains information about the Exception (such as a descriptive
string).

7This is the only case in which an expression will not be wholly evaluated, for example.

130

Once the object has been constructed, all active do groups, loop loops, if con-
structs, and select constructs in the active method are “unwound”, starting
with the innermost, until the exception is caught by a control construct that
specifies a suitable catch clause (see below) for handling the exception.

This unwinding takes place as follows:

1. No further clauses within the body of the construct will be executed (in
this respect, the signal acts like a 1eave for the construct).

2. If a catch clause specifies a type to which the exception object can be as-
signed (that is, it matches or is a superclass of the type of exception ob-
ject), then the instructionlist following that clause is executed, and the ex-
ception is considered to be handled (no further control constructs will be
unwound). If more than one catch clause specifies a suitable type, the first
is used.

3. The instructionlist following the finally clause for the construct, if any, is
executed.

4. The end clause is executed, hence completing execution of the construct.
(The only effect of this is that it is seen when tracing.)

5. If the exception was handled, then execution resumes as though the con-
struct completed normally. If it was not handled, then the process is re-
peated for any enclosing constructs.

If the exception is not caught by any of the control constructs enclosing the orig-
inal point of the exception signal, then the current active method is terminated,
without returning any data, and the exception is then signalled at the point
where the method was invoked (that is, in the caller).

The process of unwinding control constructs and terminating the method is
then repeated in each calling method until the exception is caught or the initial
program invocation method (the main method) is terminated, in which case the
program ends and the environment receives the signal (it would usually then
display diagnostic information).

4.8.1 Syntax and example

The constructs that may be used to handle (catch) an exception are do groups,
loop loops, and select constructs. Specifically, as shown in the syntax dia-
grams (g.v.), where the end clause can appear in these constructs, zero or more
catch clauses can be used to define exception handlers, followed by zero or
one finally clauses that describe “clean-up” code for the construct. The whole
construct continues to be ended by an end clause.

The syntax of a catch clause is shown in the syntax diagrams. It always specifies
an exception type, which may be qualified. It may optionally specify a symbol,
vare, which is followed by an equals sign. This indicates that when the excep-
tion is caught then the object representing the exception will be assigned to the
variable vare. If new, the type of the variable will be exception. Here is an exam-
ple of a program that handles some of the exceptions signalled by methods in

131

the Rexx class; the trace results instruction is included to show the flow of
execution:
trace results
do -- could be LOOP i=1 to 10, etc.
say 1l/arg
catch DivideException
say 'Divide exception'
catch ex=NumberFormatException
/* 'ex' 1s assigned the exception object *x/
say 'Bad number for division:' ex.getMessage
finally
say 'Done!’
end

In this example, if the argument passed to the program (and hence placed in
arg) is a valid number, then its inverse is displayed. If the argument is 0, then
“Divide exception” would be displayed. If the argument were an invalid num-
ber, the message describing the bad number would be displayed. For any other
exception (such as an ExponentOverflowException), the program would end
and the environment would normally report the exception.

In all cases, the message “Done!” would be displayed; this would be true even
if the body of the do construct executed a return, leave, or iterate instruction.
Only an exit instruction (see page pJ) would cause immediate termination of
the construct (and the program).

Note: The finally keyword, like otherwise in the select construct, implies a
semicolon after it, so the last say instruction in the example could have appeared
on the same line as the finally without an intervening semicolon.

4.8.2 Exceptions after catch and finally clauses

If an exception is signalled in the instructionlist following a catch or finally
clause, then the current exception is considered handled, the instructionlist is
terminated, and the new exception is signalled. It will not be caught by catch
clauses in the current construct. If it occurs in the instructionlist following a catch
clause, then any finally instructions will be executed, as usual.

Similarly, executing a return or exit instruction within either of the instruction-
lists completes the handling of any pending signal.

4.8.3 Checked exceptions

NetRexx implementations may define certain exceptions as checked exceptions.
These are exceptions that the implementation considers it useful to check;
the checked exceptions that each method may signal are recorded. Within do
groups, loop loops, and select constructs, for example, it is then possible to

132

report if a catch clause tries to catch a checked exception that is not signalled
within the body of the construct.

Checked exceptions that are signalled within a method (by a signal instruc-
tion or a method invocation) but not caught by a catch clause in the method
are automatically added to the signals list for a method. Implementations that
support checked exceptions are encouraged to provide options that list the un-
caught checked exceptions for methods or enforce the explicit inclusion of some
or all checked exceptions in the signals list on the method instruction.

In the reference implementation, all exceptions are checked except those that are sub-
classes of java.lang.RuntimeException or java.lang.Error. These latter are consid-
ered so ubiguitous that almost all methods would signal them.

Expressions assigned as the initial values of properties must not invoke methods that
may signal checked exceptions.

The strictsignal option on the options instruction may be used to enforce the inclu-
sion of all uncaught checked exceptions in methods” signals lists; this may be used to
assure that any uncaught checked exceptions are intentional.

4.9 Thread Pool Support

Support for thread pooling is built into the NetRexx language.

rtp=RexxTaskPool (size,number) size is the number of parallel threads de-
sired - default is the current number of available processors number is the
number of the threadpool if using multiple pools - default is pool number
0

rtp.start(runtask) runtask needs to be a class that implements the runnable in-
terface

rtp.start(maintask,mainparm) maintask is a NetRexx Java class with a standard
“main” method mainparm is a string parm to pass to the main method at
startup

rtp.start(”taskname”,mainparm) taskname is a string identifying a Java class
with a standard main method mainparm is a string parm to pass to the main
method at startup®

rtp.waituntildone Blocks until all threads in the pool are finished

rtp.waitforallpools Blocks until all threads in all task pools are complete

Examples:

RexxTaskPool(3,1).start(Test(7)).start(Test(8)).start("TestMain","9")
.start("enviroscan")

RexxTaskPool(9).start(Test(1l)).start(Test(2)).start(TestMain("3"),"3"
).start(enviroscan.class)

RexxTaskPool().start(Test(4)).start(Test(5)).start(TestMain("6"),"6")
.waituntildone

RexxTaskPool().start(Test(4)).start(Test(5)).start(TestMain("6"),"6")
.waitforallpools

80the start method returns the RexxTaskPool instance it is called on so that multiple calls can be stacked. Due to
reflection use when starting “main” methods that call format cannot be interpreted - runnables interpret ok

133

4,10 Structured Lists Interface

A Structured List class is used to create objects which can contain structured
or string encoded lists with associated methods for easy access. A Structured
List class is a subclass of the native NetRexx “Rexx” class data type which im-
plements the StructuredList interface as described below and can be used in
many cases as a normal NetRexx data item. Assuming a class named “AStruc-
turedList” is available to support structured lists:

o A StructuredList class should have a constructor that sets the encoded list
value

This creates an unexamined (unstructured) list object. The object is an object of
type Rexx with additional methods for processing lists. You must pass a Ruleset
to the list object (see the “buildlist” method below) in order to obtain a struc-
tured version of the list object which can be accessed with list methods. Note
that due to the immutability rule for base Rexx object values, all methods which
alter the content of a structured list return a new structured list object. This rule
also means that if a list is altered by a Java List view, the new structured list
object must be obtained from the ”currentlist” property of the Java List view.

Structured List formats known to NetRexx include

. WORDLIST
. DSV

. CSV

. TSV

« XML
JSON
PYTHON

4.10.1 Essential List Processing Methods

This section lists the methods provided by the StructuredList class.

buildlist(ruleset) Returns a structured list form of the encoded list contained
in the object’s string value after examination with the provided ruleset.

join(anotherStructuredList) Returns a structured list containing the elements
of the structured list with the elements from another structured list ap-
pended to it.

islist Returns 1 if the item is a structured list, otherwise returns 0. If a structured
list is empty, index “elements” will have a 0 value.

elementcount Returns the count of elements in a structured list.

getelement(index) Returns the element at the specified location in a structured
list.

getJavaList Returns a Java List interface view of the structured list.

134

index(element,start) Returns the numeric index of the first occurence of the
given element in the list with index equal to or higher than start or 0 if not
found.

insertelement(index, element) Adds an element to a list at the specified loca-
tion. Returns modified list.

replaceanelement(index, element) Replaces an element of a list at the speci-
fied location. Returns modified list.

deleteanelement(index) Removes an element from a list at the specified loca-
tion. Returns modified list.

sublist(fromIndex,toIndex) Creates a list which is a subset of the list contain-
ing the elements starting at the from index and ending at the to index.

4.10.2 Convenience Methods

append(element) Adds an element to the end of a list. Returns modified list.
head Returns the first element in a list.

tail Returns a list containing all elements except the first in a list.
count(value) Returns a count of how many elements have the provided value.

minval Returns the lowest value in a list. This is a runtime error if not all list
elements are numeric.

maxval Returns the highest value in a list. This is a runtime error if not all list
elements are numeric.

sum Returns the sum of all list elements. This is a runtime error if not all list
elements are numeric.

reverselist Returns a structured list with the order of the elements reversed.

flatlist Returns a structured list with only the list elements (all metadata is re-
moved). Nested sublists are also flattened.

4.10.3 NetRexx Structured List Format

A structured list is an ordered sequence of items stored in a NetRexx native
data object (class Rexx) along with meta data describing the list. Each element
of the list can be accessed with a whole number ranging from 1 to n where
n is the number of elements in the list. The string encoded (aka ”serialized”)
form of the string is the base value of the Rexx object. If an element of a list is
itself a list (ie a nested list), then elements of the sublist can also be accessed
by whole number indexes so that for example the 3rd element of the nested
list which is the second element of the first list could be found at myList[2,3]
where myList is the object containing the structured list. Note that although a
structured list is a Rexx object, changing the list directly rather than through the
StructuredList interface methods will cause loss of metadata and unpredictable
results for further list access.

135

4.10.4 Accessing structured lists with NetRexx facilities

Assuming myList is a Rexx object containing a structured list, then:

myList[”elements” |
Provides a count of the number of elements in a structured list. This is
meaningless if the item is not actually in the structured list format (ie if
islist returns 0).

myList[nm]
A list element can be accessed by numeric index using NetRexx indexed
variable syntax. If the element is also a list, sub-elements can be accessed
using the multiple index syntax.

Additional indexed values

“rules” The rules used to structure this list (the rules are also a structured list).
The following indexes must be prefixed with "#” to use if they are whole
numbers according to the NetRexx datatype BIF - this avoids conflict with
list index numbers.

elementname If an element has a name, using the name as an index will return
the associated element value.

element The element string will return the index of the first location of that
element in the list. elementvalue If an element has a name the named value
string will return the index of the first location of that value in the list.

4.10.5 Structured List Ruleset Description

A list ruleset specifies a set of delimiters and options and can be provided in
one of four ways:

1. A null ruleset (or the string “default”) signifies a default ruleset. Default
rules are start/end delimiters ”(” and ”)”, a separator ” ” (a blank), an
escape character ” (double quote), and the option “escape is quoted string
mode”.

2. A string such as “CSV”, which is a well known list format name, selects
a built-in ruleset. For example, a list in CSV format could be decoded
like this: inputlist=inputstring.getlist("CSV”). Formats known to a Struc-
tured List include "WORDLIST”, “"DSV”, “CSV”, "TSV”, ”XML”, "JSON”,
"PYTHON".

3. A string which provides a human readable custom set of list rules that is
itself a decomposable list according to the default ruleset. Rulesets contain
two sections: delimiters and options which are specified as separate sublists
as in the following example:

"delimiters(start(”<”) end(”>") separator(”,”) meta(”/") escape(”\\")
nameseparator(”="))
options(separators-must-follow-sublists "adjacent separators reduce to one”)’

136

4. A ruleset string that is itself an encoded list according to a known ruleset
can simply be preparsed before use like in this example:

inputlist=inputstring.buildlist(rulesetstring.buildlist("default”))

Delimiters

Any type of delimiter can be specified but the following (along with the ruleset
options) define the structure of a list. Other delimiters can be provided and will
be recognized and recorded as list elements when they occur which means they
are "defacto” separators for the list elements.

Start A delimiter which signals the start of a sublist. Example: start(””)

End A delimiter which signals the end of a sublist. Example: End(””)

Escape An escape character used to include delimiters in the list data elements.
Example: escape(”||”)

Separator A delimiter used to separate list elements. Example: Separator(”,”)

NameSeparator A delimiter used to associate element names with element val-
ues. Example: Namesep (="

Options

The following options are recognized (A “0” in front of the option indicates a
default value and a ”1” indicates an option which overrides the default value.
The additional descriptions in parenthesis are not part of the option. Options
can be specified as quoted text or with dashes substituted for spaces. Options
can be abbreviated as long as they are unique. Options are not case-sensitive.

option1 0 = separators follow sublists
1 = sublists are separators

option 2 0 = adjacent separators reduce to one
1 = produce empty elements for adjacent separatozrs

option 3 0 = translate escape sequences
1 = do not translate escape sequences

option4 0 = whitespace is translated to blank (TAB,FF,LF,CR,VT)
1 = treat whitespace as text

option 5 0 = escape is quoted string mode (ie "text, delimiters or double escape like -
1 = single character escape (ie \x)

option 6 0 = attribute names are implicit (ie fun(x,y))
1 = explicit attribute names (ie with delimiter as in fun=(x,y) oz
fun: (x,y))

option7 0 = delimiters are implicit (do not record structural delimiters)
1 = tokens are delimiters (save delimiters as separate elements)

option 8 0 = keep leading and trailing whitespace
1 = strip leading and trailing whitespace

137

Built-in methods for NetRexx strings

This section describes the set of methods defined for the NetRexx string class,
Rexx. These are called built-in methods, and include character manipulation,
word manipulation, conversion, and arithmetic methods.

Implementations will also provide other methods for the Rexx class (for exam-
ple, to implement the NetRexx operators or to provide constructors with prim-
itive arguments), but these are not part of the NetRexx language.

Methods of the RexxStream, RexxTime and RexxDate classes are, while not strictly
part of the Rexx string class, listed here, followed by a suitable referral to the
proper class documentation.

General notes on the built-in methods:

1.

All methods work on a NetRexx string of type Rexx; this is referred to by
the name string in the descriptions of the methods. For example, if the word
method were invoked using the term:

"Three word phrase".word(2)

then in the description of word the name string refers to the string “Three
word phrase”, and the name n refers to the string ”2”.

All method arguments are of type Rexx and all methods return a string of
type Rexx; if a number is returned, it will be formatted as though 0 had
been added with no rounding.

The first parenthesis in a method call must immediately follow the name
of the method, with no space in between.

The parentheses in a method call can be omitted if no arguments are re-
quired and the method call is part of a compound term (see page P2) . B2

A position in a string is the number of a character in the string, where the
first character is at position 1, efc.

Where arguments are optional, commas may only be included between ar-
guments that are present (that is, trailing commas in argument lists are not
permitted).

A pad argument, if specified, must be exactly one character long.

If a method has a sub-option selected by the first character of a string, that
character may be in upper or lowercase.

. Conversion between character encodings and decimal or hexadecimal

is dependent on the machine representation (encoding) of characters

81 Details of the methods provided in the reference implementation are included in Appendix C (see page [70) .
82Unless an implementation-provided option to disallow parenthesis omission is in force.

138

and hence will return appropriately different results for Unicode, ASCII,
EBCDIC, and other implementations.

5.1 abbrev(info [length])

returns 1 if info is equal to the leading characters of string and info is not less
than the minimum length, length; 0 is returned if either of these conditions is
not met. length must be a non-negative whole number; the default is the length
of info. Examples:

"Print'.abbrev('Pri") ==
"PRINT'.abbrev('Pri') ==
"PRINT'.abbrev('PRI',4) ==
"PRINT'.abbrev(' PRY) ==
"PRINT'.abbrev(') ==
"PRINT'.abbrev('',1) ==

(SN SNCNONON

Note: A null string will always match if a length of 0 (or the default) is used.
This allows a default keyword to be selected automatically if desired. Example:
say 'Enter option:'; option=ask

select /x keywordl is to be the default *x/

when 'keywordl'.abbrev(option) then ...
when 'keyword2'.abbrev(option) then ...

otherwise ...
end

5.2 abs()

returns the absolute value of string, which must be a number. Any sign is re-
moved from the number, and it is then formatted by adding zero with a digits
setting that is either nine or, if greater, the number of digits in the mantissa of
the number (excluding leading insignificant zeros). Scientific notation is used,
if necessary.

Examples:

'12.3".abs == 12.3

' -0.307".abs == 0.307
'123.45E+16" .abs == 1.2345E+18

‘- 1234567.7654321"' .abs == 1234567.7654321

53 b2d([n])

Converts string, a string of at least one binary (0 and/or 1) digits, to an equiv-
alent string of decimal characters (a number), without rounding. The returned
string will use digits, and will not include any blanks. If the number of binary

139

digits in the string is not a multiple of four, then up to three 0" digits will be
added on the left before conversion to make a total that is a multiple of four. If

string is the null string, 0 is returned. If n is not specified, string is taken to be an
unsigned number.

Examples:

‘01110 .b2d == 14

'10000001" .b2d == 129
'111110000001" .b2d == 3969
'1111111110000001" .b2d == 65409
'1100011011110000" .b2d == 50928

If n is specified, string is taken as a signed number expressed in n binary char-
acters. If the most significant (left-most) bit is zero then the number is positive;
otherwise it is a negative number in twos-complement form. In both cases it is
converted to a NetRexx number which may, therefore, be negative. If nis 0, 0 is
always returned.

If necessary;, string is padded on the left with ‘0" characters (note, not “signex-
tended”), or truncated on the left, to length n characters; (that is, as though
string.right(n, '0") had been executed.)

Examples:

'10000001" .b2d(8) == -127
'10000001" .b2d(16) == 129
'1111000010000001" .b2d(16) == -3967

'1111000010000001" .b2d(12) == 129
'1111000010000001" .b2d(8) == -127
'1111000010000001" .b2d(4) == 1
'0000000000110001" .b2d(0) == 0

54 b2x()

Binary to hexadecimal. Converts string, a string of at least one binary (0 and/or
1) digits, to an equivalent string of hexadecimal characters. The returned string
will use uppercase Roman letters for the values A-F, and will not include any
blanks. If the number of binary digits in the string is not a multiple of four, then
up to three "0” digits will be added on the left before conversion to make a total
that is a multiple of four.

Examples:

'11000011" .b2x == 'C3'
"10111" .b2x = '17'
'0101".b2x == '5'
"101" .b2x == '5'
'111110000"' .b2x == "1F0'

140

5.5 center(length [,pad])

or

5.6 centre(length [,pad])

returns a string of length length with string centered in it, with pad characters
added as necessary to make up the required length. length must be a non-
negative whole number. The default pad character is blank. If the string is longer
than length, it will be truncated at both ends to fit. If an odd number of characters
are truncated or added, the right hand end loses or gains one more character
than the left hand end.

Examples:

"ABC'.centre(7) = ' ABC '
"ABC'.center(8,'-") == '--ABC---'
'The blue sky'.centre(8) == 'e blue s'
'The blue sky'.center(7) == 'e blue '

Note: This method may be called either centre or center, which avoids difficul-
ties due to the difference between the British and American spellings.

5.7 changestr(needle, new)

returns a copy of string in which each occurrence of the needle string is replaced
by the new string. Each unique (non-overlapping) occurrence of the needle string
is changed, searching from left to right and starting from the first (leftmost)
position in string. Only the original string is searched for the needle, and each
character in string can only be included in one match of the needle.

If the needle is the null string, the result is a copy of string, unchanged.

Examples:

'elephant'.changestr('e','X) == 'X1Xphant'
‘elephant'.changestr('ph','X") == 'eleXant'
‘elephant'.changestr('ph', 'hph') == 'elehphant'
‘elephant'.changestr('e',"'") == 'lphant’
‘elephant'.changestr('',"'!!") == 'elephant'

The countstr method (see page [43)) can be used to count the number of changes
that could be made to a string in this fashion.

5.8 charin(name, [start], [length])

returns a string read from the stream named by the first argument, see page [64
for Class RexxStream information.

141

5.9 charout(name,[char],[start])

returns the count of characters remaining after attempting to write the second
argument to the stream named by the first argument, see page [[64 for Class
RexxStream information.

5.10 chars(name)

indicates whether there are characters remaining in the named stream. Option-
ally, it returns a count of the characters remaining and immediately available,
see page [[64 for Class RexxStream information.

5.11 compare(target [,pad])

returns 0 if string and target are the same. If they are not, the returned number
is positive and is the position of the first character that is not the same in both
strings. If one string is shorter than the other, one or more pad characters are
added on the right to make it the same length for the comparison. The default
pad character is a blank.

Examples:

"abc'.compare('abc') = 0
‘abc'.compare('ak") = 2
‘ab '.compare('a) == 0
‘ab '.compare('ab',' ') = 0
'ab '.compare('ab','x") == 3
'ab-- '.compare(' ab' '-') =5

5.12 copies(n)

returns n directly concatenated copies of string. n must be positive or 0; if 0, the
null string is returned.

Examples:

'abc'.copies(3) == 'abcabcabc'
'abc'.copies(0) == "'
‘.copies(2) ==

5.13 copyindexed (sub)

copies the collection of indexed sub-values (see page f6) of sub into the collec-
tion associated with string, and returns the modified string. The resulting collec-
tion is the union of the two collections (that is, it contains the indexes and their

142

values from both collections). If a given index exists in both collections then the
sub-value of string for that index is replaced by the sub-value from sub.

The non-indexed value of string is not affected.
Example: Following the instructions:

foo="'def"'

foo['a']=1

foo['b']=2

bar="ghti'

bar['b']="'B'

bar['c']='C"
merged=foo.copyIndexed(bar)

I] == |1|
|] —— IBI
I] J— ICI
'] == 'def’

5.14 countstr(needle)

returns the count of non-overlapping occurrences of the needle string in string,
searching from left to right and starting from the first (leftmost) position in
string.

If the needle is the null string, 0 is returned.

Examples:

'elephant'.countstr('e') == '2'
‘elephant'.countstr('ph') == "1’
"elephant'.countstr('"') = '0'

The changestr method (see page [[4]]) can be used to change occurrences of
needle to some other string.

515 c2d()

Coded character to decimal. Converts the encoding of the character in string
(which must be exactly one character) to its decimal representation. The re-
turned string will be a non-negative number that represents the encoding of
the character and will not include any sign, blanks, insignificant leading zeros,
or decimal part.

Examples:

'M'.c2d == '77' -- ASCII or Unicode
'7'.c2d == '247' -- EBCDIC

'\r'.c2d == '13' -- ASCII or Unicode
"\O'.c2d == '0'

143

The ¢2x method (see page [[44) can be used to convert the encoding of a char-
acter to a hexadecimal representation.

See also page [[7§ for compatibility with the Classic Rexx built-in function.

516 ¢2x()

Coded character to hexadecimal. Converts the encoding of the character in
string (which must be exactly one character) to its hexadecimal representation
(unpacks). The returned string will use uppercase Roman letters for the values
A-F, and will not include any blanks. Insignificant leading zeros are removed.

Examples:

'M'.c2x == '4D' -- ASCII or Unicode
'7'.¢c2x == 'F7' -- EBCDIC

'\r'.c2x == 'D' -- ASCII or Unticode
"\NO'".c2x == '0'

The c2d method (see page [[43) can be used to convert the encoding of a char-
acter to a decimal number.

See also page [[7§ for compatibility with the Classic Rexx built-in function.

5.17 datatype(option)

returns 1 if string matches the description requested with the option, or 0 other-
wise. If string is the null string, 0 is always returned.

Only the first character of option is significant, and it may be in either uppercase
or lowercase. The following option characters are recognized:

A (Alphanumeric); returns 1 if string only contains characters from the ranges
"a-z”,”A-Z",and "0-9”.

B (Binary); returns 1 if string only contains the characters ”0” and/or ”1”.

D (Digits); returns 1 if string only contains characters from the range ”"0-9”.

L (Lowercase); returns 1 if string only contains characters from the range “a-z”.

M (Mixed case); returns 1 if string only contains characters from the ranges “a-
z” and "A-Z".

N (Number); returns 1 if string is a syntactically valid NetRexx number that
could be added to "0” without error,

S (Symbol); returns 1 if string only contains characters that are valid in non-
numeric symbols (the alphanumeric characters and underscore), and does
not start with a digit. Note that both uppercase and lowercase letters are
permitted.

U (Uppercase); returns 1 if string only contains characters from the range "A-
z".

W (Whole Number); returns 1 if string is a syntactically valid NetRexx number
that can be added to "0” without error, and whose decimal part after that
addition, with no rounding, is zero.

144

X (heXadecimal); returns 1 if string only contains characters from the ranges
,,a-f,,’ IIA_FII’ and IIO_9/I'

Examples:

"101'.datatype('B
'12.3"'.datatype("’
'12.3"'.datatype("
'12.3"'.datatype("
'LaArca'.datatype
''.datatype('M") ==
‘Llanes'.datatype('L') ==
'3 d'.datatype('s") ==
'BCd3'.datatype('X") ==
'BCgd3'.datatype('X') ==

AEZU_

SR SNCNONON SNON SN ol

Note: The datatype method tests the meaning of the characters in a string, inde-
pendent of the encoding of those characters. Extra letters and Extra digits cause
datatype to return O except for the number tests ("N” and "W”), which treat ex-
tra digits whose value is in the range 0-9 as though they were the corresponding
Arabic numeral.

5.18 date()

see page [[6]]

5.19 delstr(n [,length])

returns a copy of string with the sub-string of string that begins at the nth char-
acter, and is of length length characters, deleted. If length is not specified, or is
greater than the number of characters from 7 to the end of the string, the rest of
the string is deleted (including the nth character). length must be a non-negative
whole number, and 7 must be a positive whole number. If 1 is greater than the
length of string, the string is returned unchanged.

Examples:

"abcd'.delstr(3) == 'ab'
'abcde'.delstr(3,2) == 'abe'
"abcde'.delstr(6) == 'abcde'

5.20 delword(n [,length])

returns a copy of string with the sub-string of string that starts at the nth word,
and is of length length blank-delimited words, deleted. If length is not specified,
or is greater than number of remaining words in the string, it defaults to be the
remaining words in the string (including the nth word). length must be a non-
negative whole number, and n must be a positive whole number. If # is greater

145

than the number of words in string, the string is returned unchanged. The string
deleted includes any blanks following the final word involved, but none of the
blanks preceding the first word involved.

Examples:

"Now is the time'.delword(2,2) == 'Now time'
"Now is the time '.delword(3) == 'Now i1s '
"Now time'.delword(5) == 'Now time'

5.21 d2b([n])

Returns a string of binary characters of length as needed or of length n, which
is the binary representation of the decimal number. The returned string will use
0 and 1 characters for binary values. string must be a whole number, and must
be non-negative unless n is specified, or an error will result. If n is not specified,
the length of the result returned is such that there are no leading 0 characters,
unless string was equal to 0 (in which case "0 is returned).

If n is specified it is the length of the final result in characters; that is, after con-
version the input string will be sign-extended to the required length (negative
numbers are converted assuming twos-complement form). If the number is too
big to fit into n characters, it will be truncated on the left. n must be a nonnega-
tive whole number.

Examples:

'0'.d2b == 0

'9'.d2b == 1001

'19'.d2b == 10011
'129'.d2b == 10000001

'129'.d2b(1) ==1

'129'.d2b(8) == 10000001
'127'.d2b(12) == 000001111111
'129'.d2b(16) == 0000000010000001
'257'.d2b(8) == 00000001
'-127"'.d2b(8) == 10000001
'-127'.d2b(16) == 1111111110000001
'12'.d2b(0) ==

5.22 d2c()

Decimal to coded character. Converts the string (a NetRexx number) to a single
character, where the number is used as the encoding of the character.

string must be a non-negative whole number. An error results if the encoding
described does not produce a valid character for the implementation (for ex-
ample, if it has more significant bits than the implementation’s encoding for
characters).

Examples:

146

'77'.d2c == 'M' -- ASCII or Unicode

'+77'.d2c == 'M' -- ASCII or Unicode
'247'.d2c == '7' -- EBCDIC
'0'.d2c == "\0'

5.23 d2x([n])

Decimal to hexadecimal. Returns a string of hexadecimal characters of length as
needed or of length 1, which is the hexadecimal (unpacked) representation of
the decimal number. The returned string will use uppercase Roman letters for
the values A-F, and will not include any blanks. string must be a whole number,
and must be non-negative unless 7 is specified, or an error will result. If 7 is not
specified, the length of the result returned is such that there are no leading 0
characters, unless string was equal to 0 (in which case '0” is returned).

If n is specified it is the length of the final result in characters; that is, after con-
version the input string will be sign-extended to the required length (negative
numbers are converted assuming twos-complement form). If the number is too
big to fit into n characters, it will be truncated on the left. # must be a non-
negative whole number.

Examples:

'9'.d2x == '9'
'129"'.d2x == '81'
'129'.d2x(1) == '1'
'129'.d2x(2) == '81'
'127'.d2x(3) == '07F'
'129'.d2x(4) == '0081'
'257".d2x(2) == '01'
'-127".d2x(2) == '81'
'-127'.d2x(4) == 'FF81'
'12'.d2x(0) == "'

5.24 exists(index)

returns 1 if index names a sub-value (see page f€]) of string that has explicitly
been assigned a value, or 0 otherwise.

Example: Following the instructions:

vowel=0

vowel['a']=1

vowel['b']=1

vowel['b']=null -- drops previous assignment
then:

vowel.exists('a') == '1'

vowel.exists('b') == '0'

vowel.exists('c') == '0'

147

5.25 format([before [,after]])

formats (lays out) string, which must be a number.

The number, string, is first formatted by adding zero with a digits setting that
is either nine or, if greater, the number of digits in the mantissa of the number
(excluding leading insignificant zeros). If no arguments are given, the result is
precisely that of this operation.

The arguments before and after may be specified to control the number of char-
acters to be used for the integer part and decimal part of the result respectively.
If either of these is omitted (with no arguments specified to its right), or is null,
the number of characters used will be as many as are needed for that part.

before must be a positive number; if it is larger than is needed to contain the
integer part, that part is padded on the left with blanks to the requested length.
If before is not large enough to contain the integer part of the number (including
the sign, for negative numbers), an error results.

after must be a non-negative number; if it is not the same size as the decimal
part of the number, the number will be rounded (or extended with zeros) to fit.
Specifying 0 for after will cause the number to be rounded to an integer (that is,
it will have no decimal part or decimal point).

Examples:

' - 12.73".format = '-12.73"
'0.000"'.format = '0"'
'3'.format(4) == ' 3'
'1.73"'.format(4,0) = 2'
'1.73"'.format(4,3) = 1.730"
'-.76"'.format(4,1) ="' -0.8'
'3.03'.format(4) == 3.03'
' - 12.73".format(null,4) == '-12.7300"

Further arguments may be passed to the format method to control the use of
exponential notation. The full syntax of the method is then:

format ([before[,after[,explaces[,exdigits[,exform]]]1]1]) The first two ar-
guments are as already described. The other three (explaces, exdigits, and exform)
control the exponent part of the result. The default for any of the arguments may
be selected by omitting them (if there are no arguments to be specified to their
right) or by using the value null.

explaces must be a positive number; it sets the number of places (digits after the
sign of the exponent) to be used for any exponent part, the default being to use
as many as are needed. If explaces is specified and is not large enough to contain
the exponent, an error results. If explaces is specified and the exponent will be 0,
then explaces+2 blanks are supplied for the exponent part of the result.

exdigits sets the trigger point for use of exponential notation. If, after the first for-
matting, the number of places needed before the decimal point exceeds exdigits,
or if the absolute value of the result is less than 0.000001, then exponential form
will be used, provided that exdigits was specified. When exdigits is not specified,
exponential notation will never be used. The current setting of numeric digits

148

may be used for exdigits by specifying the special word digits (see page[[05) . If 0
is specified for exdigits, exponential notation is always used unless the exponent
would be 0.

exform sets the form for exponential notation (if needed). exform may be either
’Scientific’ (the default) or "Engineering’. Only the first character of exform is
significant and it may be in uppercase or in lowercase. The current setting of
numeric form may be used by specifying the special word form (see page [[05)
. If engineering form is in effect, up to three digits (plus sign) may be needed
for the integer part of the result (before).

Examples:

'12345.73" .format(null,null,2,2) == '1.234573E+04"
'12345.73" .format(null,3,null,®) == "'1.235E+4"
'1.234573" .format(null,3,null,0) == '1.235"'

'123.45"' .format(null,3,2,0) == '1.235E+02'
'1234.5"' . format(null,3,2,0,'e') == '1.235E+03"
'1.2345"' . format(null,3,2,0) == '1.235 '
'12345.73" . format(null,null,3,6) == '12345.73 :
'12345e+5"' . format(null,3) == '1234500000.000'

Implementation minimum: If exponents are supported in an implementation,
then they must be supported for exponents whose absolute value is at least as
large as the largest number that can be expressed as an exact integer in default
precision, i.e., 999999999. Therefore, values for explaces of up to 9 should also be
supported.

5.26 insert(new [,n [length [,pad]]])

inserts the string new, padded or truncated to length length, into a copy of the
target string after the nth character; the string with any inserts is returned. length
and n must be a non-negative whole numbers. If 7 is greater than the length of
the target string, padding is added before the new string also. The default value
for n is 0, which means insert before the beginning of the string. The default
value for length is the length of new. The default pad character is a blank.

Examples:

‘abc'.insert('123") == '123abc’
"abcdef'.insert(' ',3) == 'abc def'
'abc'.insert('123',5,6) == 'abc 123 :
‘abc'.insert('123',5,6,'+') == 'abc++123+++"
‘abc'.insert('123',0,5,'-") == '123--abc’

5.27 lastpos(needle [,start])

returns the position of the last occurrence of the string needle in string (the
“haystack”), searching from right to left. If the string needle is not found, or is
the null string, 0 is returned. By default the search starts at the last character

149

of string and scans backwards. This may be overridden by specifying start, the
point at which to start the backwards scan. start must be a positive whole num-
ber, and defaults to the value string.length if larger than that value or if not
specified (with a minimum default value of one).

Examples:

‘abc def ghi'.lastpos(' ') ==
'abc def ghi'.lastpos(' ',7) ==
‘abcdefghi'.lastpos(' ') ==
‘abcdefghi'.lastpos('cd") ==
*'.lastpos('?") ==

S W ho

5.28 left(length [,pad])

returns a string of length length containing the left-most length characters of
string. The string is padded with pad characters (or truncated) on the right
as needed. The default pad character is a blank. length must be a non-negative
whole number. This method is exactly equivalent to string.substr(1, length [,

pad]).

Examples:

‘abc d'.left(8) == 'abc d '
'abc d'.left(8,'."'") == 'abc d...'
'abc defg'.left(6) == 'abc de'

5.29 length()

returns the number of characters in string.
Examples:

"abcdefgh'.length ==
"'.length ==

0

5.30 linein(name,string)

reads a line from the stream named by the first argument, unless the third ar-
gument is zero, see page [[64 for Class RexxStream information.

5.31 lineout(name,string)

returns "1’ or '0’, indicating whether the second argument has been successfully
written to the stream named by the first argument. A result of “1” means an
unsuccessful write, see page [[64 for Class RexxStream information.

150

5.32 lower([n [,length]])

returns a copy of string with any uppercase characters in the sub-string of string
that begins at the nth character, and is of length length characters, replaced by
their lowercase equivalent.

n must be a positive whole number, and defaults to 1 (the first character in
string). If n is greater than the length of string, the string is returned unchanged.

length must be a non-negative whole number. If length is not specified, or is
greater than the number of characters from #n to the end of the string, the rest of
the string (including the nth character) is assumed.

Examples:

"SumA' . lower == 'suma'
"SumA' . lower(2) == 'Suma’
'SuMB'.lower(1,1) == 'suMB'
'SUMB' .lower(2,2) == 'SumB'
"' lower = "'

5.33 max(number)

returns the larger of string and number, which must both be numbers. If they
compare equal (that is, when subtracted, the result is 0), then string is selected
for the result.

The comparison is effected using a numerical comparison with a digits setting
that is either nine or, if greater, the larger of the number of digits in the mantissas
of the two numbers (excluding leading insignificant zeros).

The selected result is formatted by adding zero to the selected number with a
digits setting that is either nine or, if greater, the number of digits in the man-
tissa of the number (excluding leading insignificant zeros). Scientific notation
is used, if necessary.

Examples:

0.max(1) ==1

"-1'.max(1) ==1

"+1'.max(-1) ==

'1.0".max(1.00) ='1.0"

'1.00"' . .max(1.0) =='1.00"

'123456700000"' .max(1234567E+5) == '123456700000"
'1234567E+5"' .max('123456700000') == '1.234567E+11"

5.34 min(number)

returns the smaller of string and number, which must both be numbers. If they
compare equal (that is, when subtracted, the result is 0), then string is selected
for the result.

151

The comparison is effected using a numerical comparison with a digits setting
that is either nine or, if greater, the larger of the number of digits in the mantissas
of the two numbers (excluding leading insignificant zeros).

The selected result is formatted by adding zero to the selected number with a
digits setting that is either nine or, if greater, the number of digits in the man-
tissa of the number (excluding leading insignificant zeros). Scientific notation
is used, if necessary.

Examples:

0.min(1) ==

‘-1".min(1) =='-1"

‘+1'.min(-1) =='-1"

'1.0".min(1.00) =="'1.0"

'1.00".min(1.0) =='1.00"

'123456700000" .min(1234567E+5) == '123456700000'
'1234567E+5"' .min('123456700000"') == '1.234567E+11"

5.35 overlay(new [,n [length [,pad]]])

overlays the string new, padded or truncated to length length, onto a copy of the
target string starting at the nth character; the string with any overlays is returned.
Overlays may extend beyond the end of the original string. If length is specified it
must be a non-negative whole number. If n1 is greater than the length of the target
string, padding is added before the new string also. The default pad character is
a blank, and the default value for n is 1. n must be greater than 0. The default
value for length is the length of new.

Examples:

‘abcdef'.overlay(' ',3) == 'ab def'
"abcdef'.overlay('.',3,2) == 'ab. ef'
'abcd'.overlay('qq') == 'qgqcd'
'abcd'.overlay('qq',4) == 'abcqq'
'abc'.overlay('123',5,6,'+"') == 'abc+123+++"

5.36 pos(needle [, start])

returns the position of the string needle, in string (the "haystack”), searching
from left to right. If the string needle is not found, or is the null string, 0 is re-
turned. By default the search starts at the first character of string (that is, start
has the value 1). This may be overridden by specifying start (which must be a
positive whole number), the point at which to start the search; if start is greater
than the length of string then 0 is returned. Examples:

'Saturday'.pos('day") == 0
'abc def ghi'.pos('x") =0
'abc def ghi'.pos(' ') == 4
'abc def ghi'.pos(' ',5) == 8

152

5.37 reverse()

returns a copy of string, swapped end for end.

Examples:

"ABc.'.reverse == '.CcBA'

‘XYZ '.reverse == ' ZYX'
‘Tranquility'.reverse == 'ytiliugnarT'

5.38 right(length [,pad])

returns a string of length length containing the right-most length characters of
string - that is, padded with pad characters (or truncated) on the left as needed.
The default pad character is a blank. length must be a non-negative whole num-
ber.

Examples:

‘abc d'.right(8) == "' abc d'
'abc def'.right(5) == 'c def'
'12'.right(5,'0') == '00012'

5.39 sequence(final)

returns a string of all characters, in ascending order of encoding, between and
including the character in string and the character in final. string and final must
be single characters; if string is greater than final, an error is reported.

Examples:

'a'.sequence('f") == 'abcdef'

"\\0"'.sequence('\\x03") == "\\Xx00\\x01\\x02\\x03"
‘\\ufffe'.sequence('\\uffff"') == "\\ufffe\\uffff"

5.40 sign()

returns a number that indicates the sign of string, which must be a number.
string is first formatted, just as though the operation ”string+0” had been car-
ried out with sufficient digits to avoid rounding. If the number then starts with
-’ then ’-1’ is returned; if it is '0” then 0’ is returned; and otherwise ’1’ is re-
turned.

Examples:

'12.3"'.sign == 1
'0.0'.sign = 0
" -0.307'.sign == -1

153

5.41 soundex()

returns the normalized soundex value of the string. This implementation is for
the English language.

Examples:

'"EULER'.soundex() == 'E460'

5.42 space([n [,pad]])

returns a copy of string with the blank-delimited words in string formatted with
n (and only n) pad characters between each word. n must be a non-negative
whole number. If 7 is 0, all blanks are removed. Leading and trailing blanks are
always removed. The default for n is 1, and the default pad character is a blank.

Examples:

'abc def '.space == 'abc def'

" abc def '.space(3) == 'abc def'
'abc def '.space(l) == 'abc def'
'abc def '.space(0) == 'abcdef'
‘abc def '.space(2,'+') == 'abc++def’

5.43 stream(name, [operation], [stream_command])

q (Operations) returns a description of the state of, or the result of an operation
upon, the stream named by the first argument, see page [[64 for Class RexxStream
information.

5.44 strip([option [,char]]])

returns a copy of string with Leading, Trailing, or Both leading and trailing char-
acters removed, when the first character of option is L, T, or B respectively (these
may be given in either uppercase or lowercase). The default is B. The second ar-
gument, char, specifies the character to be removed, with the default being a
blank. If given, char must be exactly one character long.

Examples:

" ab c '.strip == 'ab c¢'

' ab c ‘'.strip('L') == 'abc '
" ab c ‘'.strip('t') = ' ab c'
'12.70000".strip('t',0) = "12.7"'
'0012.700"' .strip('b',0) == '12.7'

154

5.45 substr(n [,length [,pad]])

returns the sub-string of string that begins at the nth character, and is of length
length, padded with pad characters if necessary. n must be a positive whole
number, and length must be a non-negative whole number. If 1 is greater than
string.length, then only pad characters can be returned. If length is omitted it
defaults to be the rest of the string (or 0 if n is greater than the length of the
string). The default pad character is a blank.

Examples:

"abc'.substr(2) == 'bc
"abc'.substr(2,4) == 'bc
"abc'.substr(5,4) == ' :
‘abc'.substr(2,6,'.') == 'bc '
"abc'.substr(5,6,'.") == "...... '

Note: In some situations the positional (numeric) patterns of parsing templates
are more convenient for selecting sub-strings, especially if more than one sub-
string is to be extracted from a string.

546 subword(n [,length])

returns the sub-string of string that starts at the nth word, and is up to length
blank-delimited words long. n must be a positive whole number; if greater than
the number of words in the string then the null string is returned. length must be
a non-negative whole number. If length is omitted it defaults to be the remain-
ing words in the string. The returned string will never have leading or trailing
blanks, but will include all blanks between the selected words.

Examples:

"Now is the time'.subword(2,2) == 'is the'
"Now i1s the time'.subword(3) == 'the time'
"Now is the time'.subword(5) = "'

5.47 time()

see page [163

5.48 translate(tableo, tablei [,pad])

returns a copy of string with each character in string either unchanged or trans-
lated to another character.

The translate method acts by searching the input translate table, tablei, for each
character in string. If the character is found in tablei (the first, leftmost, occur-
rence being used if there are duplicates) then the corresponding character in the

155

same position in the output translate table, tableo, is used in the result string; oth-
erwise the original character found in string is used. The result string is always
the same length as string.

The translate tables may be of any length, including the null string. The output
table, tableo, is padded with pad or truncated on the right as necessary to be the
same length as tablei. The default pad is a blank.

Examples:

"abbc'.translate('&','b") == 'a&&c'
'abcdef'.translate('12','ec') == 'ab2d1lf'
‘abcdef'.translate('12','abcd',"'.") == '12..ef"’
'4123"' .translate('abcd', '1234") == 'dabc'
'4123"' .translate('hods', '1234") == 'shod'

Note: The last two examples show how the translate method may be used to
move around the characters in a string. In these examples, any 4-character string
could be specified as the first argument and its last character would be moved
to the beginning of the string. Similarly, the term:

"gh.ef.abcd'.translate(19970827, 'abcdefgh')

(which returns ”27.08.1997”) shows how a string (in this case perhaps a date)
might be re-formatted and merged with other characters using the translate
method.

5.49 trunc([n])

returns the integer part of string, which must be a number, with n decimal places
(digits after the decimal point). n must be a non-negative whole number, and
defaults to zero.

The number string is formatted by adding zero with a digits setting that is either
nine or, if greater, the number of digits in the mantissa of the number (excluding
leading insignificant zeros). It is then truncated to n decimal places (or trailing
zeros are added if needed to make up the specified length). If n is 0 (the default)
then an integer with no decimal point is returned. The result will never be in
exponential form.

Examples:

"12.3"'.trunc == 12
'127.09782"' .trunc(3) == 127.097
'127.1" .trunc(3) == 127.100
"127"' .trunc(2) == 127.00
'0'.trunc(2) == 0.00

5.50 upper([n [,length]])

returns a copy of string with any lowercase characters in the sub-string of string
that begins at the nth character, and is of length length characters, replaced by

156

their uppercase equivalent.

n must be a positive whole number, and defaults to 1 (the first character in
string). If n is greater than the length of string, the string is returned unchanged.

length must be a non-negative whole number. If length is not specified, or is
greater than the number of characters from 7 to the end of the string, the rest of
the string (including the nth character) is assumed.

Examples:

'"Fou-Baa'.upper == 'FOU-BAA'
'Mad Sheep'.upper == 'MAD SHEEP'

'Mad sheep'.upper(5) == 'Mad SHEEP'
'Mad sheep'.upper(5,1) == 'Mad Sheep'
'Mad sheep'.upper(5,4) == 'Mad SHEEp'
"tinganon'.upper(1l,1) == 'Tinganon'

‘'.upper ==

5.51 verify(reference [,option [,start]])

verifies that string is composed only of characters from reference, by returning
the position of the first character in string that is not also in reference. If all the
characters were found in reference, 0 is returned. The option may be either "No-
match’ (the default) or ‘"Match’. Only the first character of option is significant
and it may be in uppercase or in lowercase. If "Match’ is specified, the position
of the first character in string that is in reference is returned, or 0 is returned if
none of the characters were found. The default for start is 1 (that is, the search
starts at the first character of string). This can be overridden by giving a differ-
ent start point, which must be positive. If string is the null string, the method
returns 0, regardless of the value of the option. Similarly if start is greater than
string.length, 0 is returned. If reference is the null string, then the returned value
is the same as the value used for start, unless "Match’ is specified as the option,
in which case 0 is returned.

Examples:

'123 "' .verify('1234567890") ==
'173" .verify('1234567890") ==
"ABAT' .verify('1234567890','M") ==
"1P3Q4"' .verify('1234567890','N',3) ==
"ABCDE"' .verify('','n',3) ==
"AB3CD5'.verify('1234567890','m',4) ==

SOwWhWwWNS

5.52 word(n)

returns the nth blank-delimited word in string. n must be positive. If there are
fewer than n words in string, the null string is returned. This method is exactly
equivalent to string.subword(1,1).

Examples:

157

"Now is the time'.word(3) == 'the'
‘Now is the time'.word(5) == "'

5.53 wordindex(n)

returns the character position of the nth blank-delimited word in string. n must
be positive. If there are fewer than n words in the string, 0 is returned.

Examples:
"Now is the time'.wordindex(3) == 8
"Now is the time'.wordindex(6) == 0

5.54 wordlength(n)

returns the length of the nth blank-delimited word in string. n must be positive.
If there are fewer than n words in the string, 0 is returned.

Examples:

'"Now is the time'.wordlength(2) ==
"Now comes the time'.wordlength(2) ==
'"Now is the time'.wordlength(6) ==

S U N

5.55 wordpos(phrase [, start])

searches string for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in string. Multiple
blanks between words in either phrase or string are treated as a single blank for
the comparison, but otherwise the words must match exactly. Similarly, leading
or trailing blanks on either string are ignored. If phrase is not found, or contains
no words, 0 is returned. By default the search starts at the first word in string.
This may be overridden by specifying start (which must be positive), the word
at which to start the search.

Examples:

'now 1s the time'.wordpos('the') ==
‘now is the time'.wordpos('The') ==
'now is the time'.wordpos('is the') ==
‘now is the time'.wordpos('is the') ==
‘now is the time'.wordpos('is time') ==
'To be or not to be'.wordpos('be') ==
'To be or not to be'.wordpos('be',3) ==

ONSNNSOW

5.56 words()

returns the number of blank-delimited words in string.

158

Examples:

"Now i1s the time'.words ==
" '.words ==
"'.words ==

[SN SR

5.57 x2b()

Hexadecimal to binary. Converts string (a string of at least one hexadecimal
characters) to an equivalent string of binary digits. Hexadecimal characters may
be any decimal digit character (0-9) or any of the first six alphabetic characters
(a-f), in either lowercase or uppercase. string may be of any length; each hex-
adecimal character with be converted to a string of four binary digits. The re-
turned string will have a length that is a multiple of four, and will not include
any blanks.

Examples:

'C3'.x2b == '11000011"

"7 .x2b == '0111'
'1C1'.x2b == '000111000001"
5.58 x2c()

Hexadecimal to coded character. Converts the string (a string of hexadecimal
characters) to a single character (packs). Hexadecimal characters may be any
decimal digit character (0-9) or any of the first six alphabetic characters (a-f),
in either lowercase or uppercase.

string must contain at least one hexadecimal character; insignificant leading ze-
ros are removed, and the string is then padded with leading zeros if necessary
to make a sufficient number of hexadecimal digits to describe a character en-
coding for the implementation.

An error results if the encoding described does not produce a valid character
for the implementation (for example, if it has more significant bits than the im-
plementation’s encoding for characters). Examples:

'004D' .x2c == 'M' -- ASCII or Unicode
"4d"' . x2c == 'M' -- ASCII or Unicode
"A2' .x2cC == 's' -- EBCDIC

'0'.x2c == '\textbackslash 0'

The d2c¢ method (see page [46) can be used to convert a NetRexx number to the
encoding of a character.

159

559 x2d([n])

Hexadecimal to decimal. Converts the string (a string of hexadecimal charac-
ters) to a decimal number, without rounding. If string is the null string, 0 is
returned.

If n is not specified, string is taken to be an unsigned number.

Examples:

'0OE"' .x2d == 14
'81'.x2d == 129
'F81'.x2d == 3969
'FF81'.x2d == 65409
'c6f0'.x2d == 50928

If n is specified, string is taken as a signed number expressed in n hexadecimal
characters. If the most significant (left-most) bit is zero then the number is pos-
itive; otherwise it is a negative number in twos-complement form. In both cases
it is converted to a NetRexx number which may, therefore, be negative. If n is 0,
0 is always returned.

If necessary, string is padded on the left with ‘0" characters (note, not ”“sign-
extended”), or truncated on the left, to length n characters; (that is, as though
string.right(n, "0”) had been executed.)

Examples:

'81'.x2d(2) == -127
'81'.x2d(4) == 129
'FO81"'.x2d(4) == -3967
"FO81".x2d(3) == 129
'FO81"'.x2d(2) == -127
"FO81'.x2d(1) == 1
'0031'.x2d(0) == 0

The c2d method (see page [43) can be used to convert a character to a decimal
representation of its encoding.

160

Classic Rexx compatible functions

6.1 date()

The RexxDate class inherits from RexxTime which implements the Classic Rexx
Date() and Time () functions.Bd

DATE

< ®
M outputDateFormat GROUP1

GROUP1

inputDate

outputSeparatorChar

GROUP2

(N
o/
inputDateFormat GROUP3

GROUP3

‘N
M outputSeparatorChar JL@
L inputSeparatorChar J

The date () function can be called standalone because the default commandline
option -implicituses causes a uses RexxDate option on the class statement to
be included. You can use the following options to obtain specific date formats.
(Only the capitalized letter is needed; all characters following it are ignored.)

83 At the 4.02 level, including the input and conversion functions, including some of the options that were available
in Rexx/VM but left out of the Rexx ANSI/ISO/INCITS standard.

161

6.1.1 Options

Base the number of complete days (that is, not including the current day) since
and including the base date, 1 January 0001, in the format: dddddd (no
leading zeros or blanks). The expression DATE('B")//7 returns a number
in the range 0-6 that corresponds to the current day of the week, where 0
is Monday and 6 is Sunday. Thus, this function can be used to determine
the day of the week independent of the national language in which you are
working. Note: The base date of 1 January 0001 is determined by extend-
ing the current Gregorian calendar backward (365 days each year, with an
extra day every year that is divisible by 4 except century years that are not
divisible by 400). It does not take into account any errors in the calendar
system that created the Gregorian calendar originally.

Century the number of days, including the current day, since and including
January 1 of the last year that is a multiple of 100 in the form: ddddd (no
leading zeros). Example: A call to DATE("C") on March 13 1992 returns
33675, the number of days from 1 January 1900 to 13 March 1992. Simi-
larly, a call to DATE('C”) on 2 January 2000 returns 2, the number of days
from 1 January 2000 to 2 January 2000. Note: When the Century option is
used for input, the output may change, depending on the current century.
For example, if DATE(’S’,1’/C") was entered on any day between 1 Jan-
uary 1900 and 31 December 1999, the result would be 19000101. However,
if DATE(’S’/1’/C’) was entered on any day between 1 January 2000 and 31
December 2099, the result would be 20000101. It is important to understand
the above, and code accordingly.

Days the number of days, including the current day, so far in the current year
in the format: ddd (no leading zeros or blanks).

Julian date in the format: yyyyddd (yy and ddd must have leading zeros).

European date in the format: dd/mm/yy (dd, mm, and yy must have leading
Zeros).

Month full name of the current month. Only valid for OutputDateFormat.

Normal date in the format: dd mon yyyy. This is the default (dd cannot have
any leading zeros or blanks; yyyy must have leading zeros but cannot have
any leading blanks). If Normal is specified for input_date_format, the in-
put_date must have the month (mon) specified in English (for example,
Jan, Feb, Mar, and so on).

Ordered date in the format: yy/mm/dd (suitable for sorting, and so forth; yy,
mm, and dd must have leading zeros).

Standard date in the format: yyyymmdd (suitable for sorting, and so forth;
yyyy, mm, and dd must have leading zeros).

Usa date in the format: mm/dd/yy (mm, dd, and yy must have leading zeros).

Weekday the name for the day of the week.

6.1.2 Conversions and date calculations

Date() with more than two arguments converts the second argument (which
has a format given by the third argument) to the format specified by the first

162

argument.

Calculations with dates can be done using the ‘B(asedate)’ option.®

6.1.3 Formatting the separator fields

The separators can be specified using the inputseparatorchar and outputseparator-
char fields.

6.1.4 Examples

say date('b','10 Mar 1962"') -- 716308

say date('w','10 Mar 1962','n') -- Saturday
say date('w','716308','b") -- Saturday
say date('s','716308','b") -- 19620310
say date('s','716308','b',"'/") -- 1962/03/10
say date('s','716308','b',"'-") -- 1962-03-10
say date('w',7688,'c"') -- Sunday

say date('c','l Feb 2021") -- 7703

say date('j','18 Jan 2021") -- 2021018
say date('j','10 Mar 1962"') -- 1962069

6.2 time()

The RexxTime class implements the Classic Rexx Time () function.

TIME

()
— @O O

The time () function can be called standalone because the default -implicituses
commandline option causes a uses RexxTime option on the class statement to
be included. You can use the following options to obtain specific time formats.
(Only the capitalized letter is needed; all characters following it are ignored.)

6.2.1 Options

Civil returns the time in Civil format: hh:mmxx. The hours may take the values
1 through 12, and the minutes the values 00 through 59. The minutes are
followed immediately by the letters am or pm. This distinguishes times
in the morning (12 midnight through 11:59 a.m.—appearing as 12:00am

84Examples can be found in the NetRexx Programming Guide.

163

through 11:59am) from noon and afternoon (12 noon through 11:59 p.m.—
appearing as 12:00pm through 11:59pm). The hour has no leading zero.
The minute field shows the current minute (rather than the nearest minute)
for consistency with other TIME results.

Elapsed returns sssssssss.uuuuuu, the number of seconds.microseconds since
the elapsed-time clock (described later) was started or reset. The number
has no leading zeros or blanks, and the setting of NUMERIC DIGITS does
not affect the number. The fractional part always has six digits.

Hours returns up to two characters giving the number of hours since midnight
in the format: hh (no leading zeros or blanks, except for a result of 0).

Long returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction of
seconds, in microseconds). The first eight characters of the result follow
the same rules as for the Normal form, and the fractional part is always six
digits.

Minutes returns up to four characters giving the number of minutes since mid-

night in the format: mmmm (no leading zeros or blanks, except for a result
of 0).

Normal returns the time in the default format hh:mm:ss, as described previ-
ously. The hours can have the values 00 through 23, and minutes and sec-
onds, 00 through 59. All these are always two digits. Any fractions of sec-
onds are ignored (times are never rounded up). This is the default.

Reset returns sssssssss.uuuuuu, the number of seconds.microseconds since the
elapsed-time clock (described later) was started or reset and also resets the
elapsed-time clock to zero. The number has no leading zeros or blanks, and
the setting of NUMERIC DIGITS does not affect the number. The fractional
part always has six digits.

Seconds returns up to five characters giving the number of seconds since mid-
night in the format: sssss (no leading zeros or blanks, except for a result of
0).

6.2.2 Examples

args=String[]) static

n(
say time() 22:16:33
say time('C") -- 10:16pm
say time('E") -- 0.000000
say time('R") -- 0
say time('H") -- 22
say time('L") -- 22:16:33.836725
say time('M") -- 1336
say time('N") -- 22:16:33
say time('0") -- 22:16:33
say time('R") -- 0.001204
say time('E") -- 0.000271
say time('S") -- 80193

164

6.3 charin(name,[start], [length])

returns a string read from the stream named by the first argument.

6.4 charout(name,|char],[start])

returns the count of characters remaining after attempting to write the second
argument to the stream named by the first argument. For start, only 1 is cur-
rently implemented (which rewrites the file, where the default is to append to
an existing file).

6.5 chars(name)

indicates whether there are characters remaining in the named stream. Option-
ally, it returns a count of the characters remaining and immediately available.

6.6 linein(name,string)

reads a line from the stream named by the first argument, unless the third ar-
gument is zero.

6.7 lineout([name],[string],[line])

returns 1" or '0’, indicating whether the second argument has been successfully
written to the stream named by the first argument. A result of "1’ means an
unsuccessful write. The line argument, when 1, causes the stream to be rewritten
from the start (line 1), where the default is to append to an existing stream.

6.8 lines(name)

returns the number of lines remaining in the named stream.

6.9 stream(name, [operation], [stream_command])

(Operations) returns a description of the state of, or the result of an operation
upon, the stream named by the first argument. The first argument is a stream
name, the second is either

C(ommand)

165

D (escription
S(tate)

When used with the S(tate) option, STREAM returns one of the following
strings:

ERROR
NOTREADY
READY
UNKNOWN

Commands are expressions that evaluate to the following command strings:

'"OPEN’ opens the named stream. The default for ‘'OPEN’ is to open the stream
for both reading and writing data. The STREAM function itself returns
'READY’ is succesfully opened.

"CLOSE’ closes the named stream. The STREAM function itself returns 'READY’
is succesfully closed.

"QUERY EXISTS’ returns the full path specification of the named stream, if it
exists, or a null string otherwise.

"QUERY SIZE’ returns the size in bytes of a persistent stream.

'"QUERY DATETIME’ returns the date and time stamps of a persistent stream.
This has a 2-digit year format.

"QUERY TIMESTAMP’ returns the date and time stamps of a persistent stream
in ISO-format. (This has a 4-digit year format).

The methods charin and charout work on UTF characters, in practice this means
that what is read with charin, needs to be written with charout.

6.9.1 Examples

-- write two lines to the file testdata.txt
lineout('testdata.txt','the first quick brown fox')
lineout('testdata.txt','jumps over the first lazy dog')

-- write two lines to the file testdata2.txt
lineout('testdata2.txt', 'the second quick brown fox')
lineout('testdata2.txt', 'jumps over the second lazy dog')

-- close the file
stream('testdata.txt','c', 'CLOSE")

-- show the 1lines() function - loop until eof
loop i=1 while lines('testdata.txt') > 0

say linein('testdata.txt') i
end

-- see i1f it exists. Returns the full path
say stream('testdata.txt','c', 'QUERY EXISTS')
-- gquery its size. Should be 56 bytes

say stream('testdata.txt','c', 'QUERY SIZE')

166

-- display lines from different files
say linein('testdata.txt')
say linein('testdata2.txt"')
say linein('testdata.txt"')

-- show the charout function, which outputs UTF
loop for 15

charout('testdata.dat','a")
end

-- read back these 15 characters
loop for 15

say charin('testdata.dat') 'from loop 15'
end

-- close the file
stream('testdata.dat','c', 'CLOSE")

-- use the chars() function to loop until EOF
loop i=1 while chars('testdata.dat') > 0

say charin('testdata.dat') 'from chars' i
end

-- display the last modified date of the last file
say stream('testdata.dat','c', 'QUERY DATETIME')

-- in the post-2000 era

say stream('testdata.dat','c', 'QUERY TIMESTAMP')

167

A

Appendix A - A Sample NetRexx Program

This appendix includes a short program, called qtime, which is an example of
a "real” NetRexx program. The programs included elsewhere in this book have
been contrived to illustrate specific points. By contrast, qtime is a simple but
useful tool that genuinely improves the human factors of computer systems.
People frequently wish to know the time of day, and this program presents this
information in a natural way.

The style used for this example is the same as that used throughout the book,
with all symbols except those describing classes being written in lower case.
Other NetRexx programming styles are possible, of course; NetRexx syntax is
designed to permit a wide variety of styles with a minimum of punctuation.

The qtime program is a modification of one of the first Rexx programs ever
written (much of the program is identical). The main change is®:

+ Indexed variables (brackets notation) are used instead of Rexx stems.

qtime.nrx - Query Time

K mmm m e */
/* QTIME. This program displays the time in real English. x/
/* If "?" is given as the first argument word then the */
/* program displays a description of 1itself. */
R ettt */
[R——m—————— First process any argument words ----------——-—-—-- *x/
parse arg parm . /* get the first argument word */
select

when parm='?"' then tell /* say what we do x/

when parm="'"' then nop /* OK (no first argument) x/

otherwise

say 'The only valid argument to QTIME is "?". The word'
say 'that you supplied ("'parm'") has been ignored.'

tell /* usually helpful to describe the program x/
end

[HR—mm - Now start processing in earnest -------————----—- */
/* Nearness phrases - using associative array lookup */
near="" /* default x/
near[0]="" /* exact x/
near[1l]=' just gone'; near[2]=' just after' /* after x/
near[3]=' nearly'; near[4]=' almost' /* before x/
/* Extract the hours, minutes, and seconds from the time. */

85Historically, the NetRexx version used the Java Date() class, where the Rexx version of the Time() built-in function
was not implemented yet, and the word method on a Rexx String was used.

168

parse Time() hour':'min':'sec

if sec>29 then min=min+l /* round up minutes
mod=min//5 /* where we are in 5 minute bracket
out="It's"near[mod] /* start building the result
if min>32 then hour=hour+l /* we are TO the hour...
min=min+2 /* shift minutes to straddle a 5-minute point

/* Now special-case the result for Noon and Midnight hours
if hour//12=0 & min//60<=4 then do
if hour=12 then say out 'Noon.'
else say out 'Midnight.’

return /* we are finished here
end
min=min-(min//5) /* find nearest 5 mins
if hour>12
then hour=hour-12 /* get rid of 24-hour clock
else
if hour=0 then hour=12 /* .. and allow for midnight

/* Determine the phrase to use for each 5-minute segment
select

when min=0 then nop /* add "o'clock" later

when min=60 then min=0 /* ditto

when min= 5 then out=out 'five past'

when min=10 then out=out 'ten past'

when min=15 then out=out 'a quarter past'

when min=20 then out=out 'twenty past'

when min=25 then out=out 'twenty-five past'

when min=30 then out=out 'half past'

when min=35 then out=out 'twenty-five to'

when min=40 then out=out 'twenty to'

when min=45 then out=out 'a quarter to'

when min=50 then out=out 'ten to'

when min=55 then out=out 'five to'

end
numbers='one two three four five six'- /* (continuation)
'seven eight nine ten eleven twelve '
out=out word(numbers,hour) /* add the hour number
if min=0 then out=out "o'clock" /% .. and o'clock if exact
say out'.' /* display the final result
K m m -

/* Subroutine that describes the purpose of the program
K m m e -
method tell static
say 'QTIME will display the current time in real English.'
say 'Call without any arguments to display the time, or wit
say '"?" to display this information.'
say 'British English idioms are used in this program.'
say /* blank line - we are about to continue and show time
return

/* Mike Cowlishaw, December 1979 - January 1985
/* NetRexx version March 1996

169

*/
*/
*/
*/
*/

*/

*/

*/

*/
*/

*/
*/

*/

*/
*/

*/

*/
*/

h 1

*/

*/
*/

B

Appendix B - The netrexx.lang Package

This appendix documents the netrexx.lang package, which includes the classes
used for creating string objects of type Rexx along with several classes that are
often used while running NetRexx programs.

This appendix describes the public methods and properties of these classes, as
implemented by the reference implementation. It does not include those “built-
in” Methods for NetRexx (see page [L6]]) strings in the Rexx class that form part
of the NetRexxlanguage, or those classes and methods that are internal “helper”
components (which, for example, are used as repositories for rarely-executed
code).

The classes in the netrexx.lang package are:

+ The Exception classes (see page [[70)

* Rexx (see page [[71))

« RexxIO (helper class, see page [7€)

+ RexxNode (helper class, for indexed strings)

+ RexxOperators interface (see page [[78)

* RexxParse (helper class, for parse)

» RexxSet (see page [[78)

» RexxTrace (helper class, for trace)

« RexxUtil (helper class, for the Rexx class)

+ RexxWords (helper class, for the Rexx class)

+ RexxDate (class that implements the Date BIF, see page [[61))
» RexxTime (class that implements the Time BIF, see page [[63)

+ RexxRexx (class that implements the non-oo, Classic Rexx compatible way
to call Rexx Built-in-functions)

B.1 Exception classes

The classes provided for exceptions in the netrexx.lang package are all sub-
classes of java.lang.RuntimeException and all have the same content. Each has
two constructors: one taking no argument and the other taking a string of type
java.lang.String, which is used for additional detail describing the exception.

The Exceptions are signalled as follows.

BadArgumentException signalled when an argument to a method is incorrect.

170

BadColumnException signalled when a column number in a parsing template
is not valid (for example, not a number).

BadNumericException signalled when a numeric digits instruction tries to set
a value that is not a whole number, or is not positive, or is more than nine
digits.

DivideException signalled when an error occurs during a division. This may
be due to an attempt to divide by zero, or when the intermediate result of
an integer divide or remainder operation is not valid.

ExponentOverflowException signalled when the exponent resulting from an
operation would require more than nine digits.

NoOtherwiseException signalled when a select construct does not supply an
otherwise clause and none of expressions on the when clauses resulted in
1.

NotCharacterException signalled when a conversion from a string to a single
character was attempted but the string was not exactly one character long.

NotLogicException signalled when a conversion from a string to a boolean was
attempted but the string was neither the string "0” nor the string "1".

Other exceptions, from the java.lang package, may also be signalled, for exam-
ple NumberFormatException or NullPointerException.

B.2 The Rexx class

The class netrexx.lang.Rexx implements the NetRexx string class, and includes
the ”built-in” Methods for NetRexx strings (see page [[6]]).

Described here are the platform-dependent methods as provided in the refer-
ence implementation: constructors (see page [[71)) for the class, the methods for
arithmetic operations (see page [[73) , and miscellaneous methods (see page
[75) intended for general use.

The class netrexx.lang.Rexx is serializable.

B.3 REexx constructors

These constructors all create a string of type netrexx.lang.Rexx.

Rexx(arg=Dboolean)
Constructs a string which will have the value 1" ifarg is 1 (true) or the value
0" if arg is O (false).

Rexx(arg=byte)
Constructs a string which is the decimal representation of the 8-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with
a leading minus sign (hyphen) if arg is negative. A leading zero will be
present only if arg is zero.

171

Rexx(arg=char)
Constructs a string of length 1 whose first and only character is a copy of
arg.

Rexx(arg=char|[])
Constructs a string by copying the characters of the character array arg in
sequence. The length of the string is the number of elements in the charac-
ter array (that is, arg.length).

Rexx(arg=int)
Constructs a string which is the decimal representation of the 32-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with
a leading minus sign (hyphen) if arg is negative. A leading zero will be
present only if arg is zero.

Rexx(arg=double)
Constructs a string which is the decimal representation of the 64-bit signed
binary floating point number arg. (The precise format of the result may change
and will be defined later.)

Rexx(arg=float)
Constructs a string which is the decimal representation of the 32-bit signed
binary floating point number arg. (The precise format of the result may change
and will be defined later.)

Rexx(arg=long)
Constructs a string which is the decimal representation of the 64-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with
a leading minus sign (hyphen) if arg is negative. A leading zero will be
present only if arg is zero.

Rexx(arg=REexx)
Constructs a string which is copy of arg, which is of type netrexx.lang.Rexx.
arg must not be null. Any sub-values (see page ff) are ignored (that is, they
are not present in the object returned by the constructor).

Rexx(arg=short)
Constructs a string which is the decimal representation of the 16-bit signed
binary integer arg. The string will contain only decimal digits, prefixed with
a leading minus sign (hyphen) if arg is negative. A leading zero will be
present only if arg is zero.

Rexx(arg=5String)
Constructs a NetRexx string by copying the characters of arg, which is of
type java.lang.String, in sequence. The length of the string is same as the
length of arg (that is, arg.length()). arg must not be null.

Rexx(arg=String|])
Constructs a NetRexx string by concatenating the elements of the java.lang.String
array arg together in sequence with a blank between each pair of elements.
This may be used for converting the argument word array passed to the
main method of a Java application into a single string.
If the number of elements of arg is zero then an empty string (of length 0)
is returned. Otherwise, the length of the string is the sum of the lengths of
the elements of arg, plus the number of elements of arg, less one.
arg must not be null.

172

B.4 Rexx arithmetic methods

These methods implement the NetRexx arithmetic operators, as described in
the section on Numbers and (see page [[1§) arithmetic. Each corresponds to and
implements a method in the RexxOperators interface class (see page [[79) .

Each of the methods here takes a RexxSet (see page [[7§) object as an argu-
ment. This argument provides the numeric settings for the operation; if null
is provided for the argument then the default settings are used (digits=9,
form=scientific).

For monadic operators, only the RexxSet argument is present; the operation
acts upon the current object. For dyadic operators, the RExxSet argument and a
Rexx argument are present; the operation acts with the current object being the
left-hand operand and the second argument being the right-hand operand. For
example, under default numeric settings, the expression:

award+extra

(where award and extra are references to objects of type Rexx) could be written
as:

award.OpAdd(null, extra)

which would return the result of adding award and extra under the default nu-
meric settings.

OpAdd (set=RexxSet, rhs=Rexx)
Implements the NetRexx + (Add) operator, and returns the result as a
string of type Rexx.

OpAnd (set=RexxSet, ths=Rexx)
Implements the NetRexx & (And) operator, and returns a result (0 or 1) of
type boolean.

OpCc(set=RexxSet, rhs=Rexx)
Implements the NetRexx || or abuttal (Concatenate without blank) operator,
and returns the result as a string of type Rexx.

OpCcblank(set=RexxSet, rhs=Rexx)
Implements the NetRexx blank (Concatenate with blank) operator, and re-
turns the result as a string of type Rexx.

OpDiv (set=RexxSet, rhs=REexx)
Implements the NetRexx / (Divide) operator, and returns the result as a
string of type Rexx.

OpDivl(set=RexxSet, rhs=Rexx)
Implements the NetRexx % (Integer divide) operator , and returns the re-
sult as a string of type Rexx.

OpEq(set=RexxSet, rhs=Rexx)
Implements the NetRexx = (Equal) operator, and returns a result (0 or 1)
of type boolean.

OpEqS(set=RexxSet, ths=Rexx)

173

Implements the NetRexx == (Strictly equal) operator, and returns a result
(0 or 1) of type boolean.

OpGt(set=RexxSet, rhs=Rexx)
Implements the NetRexx > (Greater than) operator, and returns a result (0
or 1) of type boolean.

OpGtEq(set=RexxSet, rhs=Rexx)
Implements the NetRexx >= (Greater than or equal) operator, and returns
a result (0 or 1) of type boolean.

OpGtEqS(set=RexxSet, rhs=REexx)
Implements the NetRexx »= (Strictly greater than or equal) operator, and
returns a result (0 or 1) of type boolean.

OpGtS(set=RexxSet, rhs=Rexx)
Implements the NetRexx » (Strictly greater than) operator, and returns a
result (0 or 1) of type boolean.

OpLt(set=RexxSet, rhs=Rexx)
Implements the NetRexx < (Less than) operator, and returns a result (0 or
1) of type boolean.

OpLtEq(set=RexxSet, rhs=Rexx)
Implements the NetRexx <= (Less than or equal) operator, and returns a
result (0 or 1) of type boolean.

OpLtEqS(set=RexxSet, rhs=Rexx)
Implements the NetRexx «= (Strictly less than or equal) operator, and re-
turns a result (0 or 1) of type boolean.

OpLtS(set=RexxSet, rhs=Rexx)
Implements the NetRexx « (Strictly less than) operator, and returns a result
(0 or 1) of type boolean.

OpMinus (set=RexxSet)
Implements the NetRexx Prefix - (Minus) operator , and returns the result
as a string of type Rexx.

OpMult(set=RexxSet, ths=Rexx)
Implements the NetRexx * (Multiply) operator , and returns the result as a
string of type Rexx.

OpNot(set=RexxSet)
Implements the NetRexx Prefix \ (Not) operator, and returns a result (0 or
1) of type boolean.

OpNotEq(set=RexxSet, rhs=Rexx)
Implements the NetRexx \= (Not equal) operator, and returns a result (0
or 1) of type boolean.

OpNotEqS(set=RexxSet, rhs=Rexx)
Implements the NetRexx \== (Strictly not equal) operator, and returns a
result (0 or 1) of type boolean.

OpOr (set=RexxSet, ths=Rexx)
Implements the NetRexx | (Inclusive or) operator, and returns a result (0
or 1) of type boolean.

174

OpPlus(set=RexxSet)
Implements the NetRexx Prefix + (Plus) operator , and returns the result
as a string of type Rexx.

OpPow (set=RexxSet, rhs=RExx)
Implements the NetRexx ** (Power) operator , and returns the result as a
string of type Rexx.

OpRem (set=RexxSet, rhs=Rexx)
Implements the NetRexx // (Remainder) operator , and returns the result
as a string of type Rexx.

OpSub (set=RexxSet, rhs=RExx)
Implements the NetRexx - (Subtract) operator, and returns the result as a
string of type Rexx.

OpXor (set=RexxSet, ths=Rexx)
Implements the NetRexx && (Exclusive or) operator, and returns a result
(0 or 1) of type boolean.

B.5 Rexx miscellaneous methods

These methods provide standard Java methods for the class, together with var-
ious conversions.

charAt(offset=int)
Returns the character from the string at offset (that is, if offset is 0 then the
first character is returned, etc.). The character is returned as type char.
If offset is negative, or is greater than or equal to the length of the string, an
exception is signalled.

equals(item=Object)
Compares the string with the value of item, using a strict character-by-
character comparison, and returns a result of type boolean.
If item is null or is not an instance of one of the types Rexx, java.lang.String,
or char|[], then 0 is returned. Otherwise, item is converted to type Rexx and
the OpEqS (see page [[73) method (or equivalent) is used to compare the
current string with the converted string, and its result is returned.

hashCode()
Returns a hashcode of type int for the string. This hashcode is suitable for
use by the java.util.Hashtable class.

toboolean()
Converts the string to type boolean. If the string is neither “0” nor “1” then
a NotLogicException (see page [[71)) is signalled.

tobyte()
Converts the string to type byte. If the string is not a number, has a non-
zero decimal part, or is out of the possible range for a byte (8-bit signed
integer) result then a NumberFormatException is signalled.

toByteArray ()
byte[], observing the standard codepage for the platform.

175

tochar()
Converts the string to type char. If the string is not exactly one character in
length then a NotCharacterException (see page [[7])) is signalled.

toCharArray/()
Converts the string to type char[]. A character array object of the same
length as the string is created, and the characters of the string are copied to
the array in sequence. The character array is then returned.

todouble()
Converts the string to type double. If the string is not a number, or is out
of the possible range for a double (64-bit signed floating point) result then
a NumberFormatException is signalled.

tofloat()
Converts the string to type float. If the string is not a number, or is out of
the possible range for a float (32-bit signed floating point) result then a
NumberFormatException is signalled.

toint()
Converts the string to type int. If the string is not a number, has a non-
zero decimal part, or is out of the possible range for an int (32-bit signed
integer) result then a NumberFormatException is signalled.

tolong()
Converts the string to type long. If the string is not a number, has a non-
zero decimal part, or is out of the possible range for a long (64-bit signed
integer) result then a NumberFormatException is signalled. [%hide

toRexx (arg=char[]) static
Takes arg, an array of characters, and returns a copy of it as a string of type
netrexx.lang.Rexx. If the argument is null, then null is returned (not a null
string). This is a static method (a function).

toRexx (arg=>String) static
Takes arg, a java.lang.String, and returns a copy of it as a string of type
netrexx.lang.Rexx. If the argument is null, then null is returned (not a null
string). This is a static method (a function).

toshort()
Converts the string to type short. If the string is not a number, has a non-
zero decimal part, or is out of the possible range for a short (16-bit signed)
result then a NumberFormatException is signalled.

toString ()
Converts the string to type java.lang.String. A String object of the same
length as the string is created, and the characters of the string are copied to
the new string in sequence. The String is then returned.

B.6 The RexxIO class

The RexxI0 class implements a number of helper methods, for example RexxI0.say,
a call to which is generated when a program contains a say statement.

Ask() static returns Rexx get a line of text from the console

176

AskOne() static returns Rexx get one character from the console (still requires
a return)

Say(obj=Object) static returns boolean put a line out to the console
If the line ends in the NUL character ("\-" or "\0") then no line termination
is provided (and the NUL is deleted). If the write succeeds 0 is returned,
otherwise 1 is returned.

Say (str=String) static returns boolean put a line out to the console
Say(line=RExx) static returns boolean put a line out to the console
Say(c=char) static returns boolean put a line out to the console
Say(n=long) static returns boolean put a line out to the console
Say(f=float) static returns boolean put a line out to the console
Say(d=double) static returns boolean put a line out to the console
Say(b=Dboolean) static returns boolean put a line out to the console

Say(aline=char|) static returns boolean |
put a line out to the console

setOutputStream (out=OutputStream) static change the outputstream for say
to use

pushOutputStream (out=OutputStream) static push an outputstream on the
decque, for say to use

popOutputStream () static remove an outputstream from the decque, will not
be used anymore

File(nm) returns RexxIO define a file to the RexxXIO instance

forEachline(c=LineHandler) define a callback that calls an instance of the
LineHandler interface

forEachline(c=LineHandler,numLines) define a callback that calls an in-
stance of the LineHandler interface that is only called a number of times
as specified in numLines

The LineHandler interface has just one method, handle (in=Rexx (which takes a
parameter of type Rexx).

B.6.1 Example

class testLine implements LineHandler
method main(args=String[]) static

RexxIO().File("legenda.txt").forEachline(testLine())
RexxIO().File("legenda.txt").forEachline(testLine().testFile2())

method handle(1in)
say in

class testLine.testFile2 dependent implements LineHandler
method handle(in)
say in

177

B.7 The RexxRexx class

The RexxRexx class contains a copy of every method of the Rexx class, but callable
in a non-object-oriented manner, like is done in Classic Rexx. An automatic uses
RexxRexx is added to the generated Class due to the default implicituses com-
mandline option.

In the cases of c2d() and c2x(), where the NetRexx oo-notation only accepts a
char argument, these functions, when called in Classic notation, accept a Rexx
string argument, and will convert all characters in the string argument to deci-
mal or hexadecimal representations, respectively.

B.8 The RexxOperators interface class

The RexxOperators interface class defines the signatures of the methods that
implement the NetRexx (and Rexx) operators. These methods are described in
the section Rexx arithmetic methods (see page [73)

In the future this interface may be used to allow the overloading of operators
for objects of types other than Rexx. The current NetRexx language definition
does not permit operator overloading.

B.9 The RexxSet class

The RexxSet class is used to provide the numeric settings for the methods de-
scribed in the section Rexx (see page [[73) arithmetic methods. When provided,
a RexxSet Object supplies the numeric settings for the operation; when null is
provided then the default settings are used (digits=9, form=SCIENTIFIC).

B.9.1 Public properties

These properties supply the numeric settings and certain values they may take.
After construction, the digits and form values should only be changed by using
the setDigits and setForm methods.

DEFAULT_DIGITS
A constant of type int that describes the default number of digits for a nu-
meric operation (9).

DEFAULT_FORM
A constant of type byte that describes the default exponential format for a
numeric operation (SCIENTIFIC).

digits
A value of type int that describes the numeric digits to be used for a nu-
meric operation. The Rexx arithmetic (see page [[73) methods use this value
to determine the significance of results. digits must always be greater than
zero.

178

ENGINEERING
A constant of type byte that signifies that engineering exponential format-
ting should be used for a numeric operation.

form
A value of type byte that describes the exponential format to be used for
a numeric operation. The Rexx arithmetic (see page [73) methods use this
value to determine the formatting of results that require an exponent. form
must be either ENGINEERING or SCIENTIFIC.

SCIENTIFIC
A constant of type byte that signifies that scientific exponential formatting
should be used for a numeric operation.

B.9.2 Constructors

These constructors are used to set the initial values of a RexxSet object.

RexxSet()
Constructs a RexxSet object which has default digits and form properties.
RexxSet(newdigits=int)
Constructs a RexxSet object which has its digits property set to newdigits
and its form property set to DEFAULT_DIGITS.
RexxSet(newdigits=int, newform=byte)
Constructs a RexxSet object which has its digits property set to newdigits
and its form property set to newform.
RexxSet(arg=RexxSet)
Constructs a RexxSet object which is copy of arg, which is of type net-
rexx.lang.RexxSet. ar¢g must not be null.

B.9.3 Methods

The RexxSet class has the following additional methods:

formword()
Returns a string of type netrexx.lang.Rexx that describes the form prop-
erty. This will either be the string “engineering’ or the string “scientific’,
corresponding to the form value ENGINEERING or SCIENTIFIC, respectively.
setDigits(newdigits=Rexx)
Sets the digits value for the RexxSet object, from newdigits, after rounding
and checking as defined for the numeric instruction; newdigits must be a
positive whole number with no more than nine digits. No value is returned.
setForm (newformword =Rexx)
Sets the form value for the RexxSet object, from newformword. This must
equal either the string “engineering’ or the string “scientific’, correspond-
ing to the form value ENGINEERING or SCIENTIFIC, respectively. No value is
returned.

179

C

Appendix C - Translator Options

There are a number of options for the translator, some of which can be specified
on the translator command line, and others also in the program source on the
options statement. In the following table, ¢ stands for commandline only, and b
stands for both source and commandline. On the commandline, options are pre-
fixed with a dash (“-”), while in programsource they are not - there they are
preceded by the options statement.

TABLE 9: Options

Option Meaning Place
address address instruction is allowed (default) C
annotations annotations are allowed (default) C
arg words interpret; remaining words are arguments C
binary classes are binary classes b
classpath specify a classpath c
compile compile (default; -nocompile implies -keep) c
comments copy comments across to generated .java b
compact display error messages in compact form b
console display messages on console (default) c
crossref generate cross-reference listing b
decimal allow implicit decimal arithmetic b
diag show diagnostic messages b
eqj prefer the ecj compiler c
exec interpret with no argument words c
explicit local variables must be explicitly declared b
format format output file (pretty-print) b
implicituses | use Classic Rexx compatibility option (default) b
java generate Java source code for this program b
javac prefer the javac compiler c
keep keep any completed .java file (as xxx.java.keep) c
keepasjava keep any completed .java file (as xxx.java) c
logo display logo (banner) after starting b
prompt prompt for new request after processing C
savelog save messages in NetRexxC.log c
replace replace .java file even if it exists b

Continued on next page

180

Table 9 — continued from previous page

sourcedir force output files to source directory b
strictargs empty argument lists must be specified as () b
strictassign assignment must be cost-free b
strictcase names must match in case b
strictimport | all imports must be explicit b
strictmethods | superclass methods are not compared to local methods | b
for best match
strictprops even local properties must be qualified b
strictsignal signals list must be explicit b
symbols include symbols table in generated .class files b
time display timings C
trace[n] trace stream [1 or 2], or 0 for NOTRACE b
utf8 source file is in UTF8 encoding b
verbose[n| verbosity of progress reports [0-5] b
warnexit(exit with a zero returncode on warnings C

Options valid for the options statement and on the commandline

These are the options that can be used on the options statement:

address This option defaults to address. When noaddress is specified, the use
of the address instruction in a program will be flagged as an error.

binary All classes in this program will be binary classes. In binary classes, lit-
erals are assigned binary (primitive) or native string types, rather than
NetRexx types, and native binary operations are used to implement oper-
ators where appropriate, as described in “Binary values and operations”.
In classes that are not binary, terms in expressions are converted to the
NetRexx string type, Rexx, before use by operators.

comments Comments from the NetRexx source program will be passed through
to the Java output file (which may be saved with a .java.keep or .java exten-
sion by using the -keep and -keepasjava command options, respectively).

compact Requests that warnings and error messages be displayed in compact
form. This format is more easily parsed than the default format, and is in-
tended for use by editing environments. Each error message is presented as
a single line, prefixed with the error token identification enclosed in square
brackets. The error token identification comprises three words, with one
blank separating the words. The words are: the source file specification,
the line number of the error token, the column in which it starts, and its
length. For example (all on one line):

[D:\test\test.nrx 3 8 5] Exrror: The external name
"class’ is a Java reserved word, so would not be
usable from Java programs

Any blanks in the file specification are replaced by a null ("\0") character.
Additional words could be added to the error token identification later.

181

crossref Requests that cross-reference listings of variables be prepared, by class.

decimal Decimal arithmetic may be used in the program. If nodecimal is speci-
fied, the language processor will report operations that use (or, like normal
string comparison, might use) decimal arithmetic as an error. This option
is intended for performance-critical programs where the overhead of inad-
vertent use of decimal arithmetic is unacceptable.

diag Requests that diagnostic information (for experimental use only) be dis-
played. The diag option word may also have side-effects.

explicit Requires that all local variables must be explicitly declared (by assign-
ing them a type but no value) before assigning any value to them. This
option is intended to permit the enforcement of “house styles” (but note
that the NetRexx compiler always checks for variables which are referenced
before their first assignment, and warns of variables which are set but not
used).

format Requests that the translator output file (Java source code) be formatted
for improved readability. Note that if this option is in effect, line numbers
from the input file will not be preserved (so run-time errors and exception
trace-backs may show incorrect line numbers).

implicituses Requests that the Classic Rexx compatibility option is in force.
With this, Rexx Date() and Time() static functions are available, as is
the procedural notation for built-in functions. When compatibility prob-
lems with older program sources occur, these can be resolved with option
-noimplicituses.

java Requests that Java source code be produced by the translator. If nojava is
specified, no Java source code will be produced; this can be used to save a
little time when checking of a program is required without any compilation
or Java code resulting.

logo Requests that the language processor display an introductory logotype se-
quence (name and version of the compiler or interpreter, etc.).

sourcedir Requests that all .class files be placed in the same directory as the
source file from which they are compiled. Other output files are already
placed in that directory. Note that using this option will prevent the -run
command option from working unless the source directory is the current
directory.

strictargs Requires that method invocations always specify parentheses, even
when no arguments are supplied. Also, if strictargs is in effect, method
arguments are checked for usage —a warning is given if no reference to the
argument is made in the method.

strictassign Requires that only exact type matches be allowed in assignments
(this is stronger than Java requirements). This also applies to the matching
of arguments in method calls.

strictcase Requires that local and external name comparisons for variables,
properties, methods, classes, and special words match in case (that is,
names must be identical to match).

182

strictimport Requires that all imported packages and classes be imported ex-
plicitly using import instructions. That is, if in effect, there will be no auto-
matic imports, except those related to the package instruction.

strictmethods Superclass methods are not compared to local methods for best
match.

strictprops Requires that all properties, including those local to the current
class, be qualified in references. That is, if in effect, local properties can-
not appear as simple names but must be qualified by this. (or equivalent)
or the class name (for static properties).

strictsignal Requires that all checked exceptions signalled within a method but
not caught by a catch clause be listed in the signals phrase of the method
instruction.

symbols Symbol table information (names of local variables, etc.) will be in-
cluded in any generated .class file. This option is provided to aid the pro-
duction of classes that are easy to analyse with tools that can understand
the symbol table information. The use of this option increases the size of
.class files.

trace, traceX If given as -trace, -tracel, or -trace2, then trace instructions are ac-
cepted. The trace output is directed according to the option word: -tracel
requests that trace output is written to the standard output stream, -trace
or -trace2 imply that the output should be written to the standard error
stream (the default).

utf8 If given, clauses following the options instruction are expected to be en-
coded using UTF-8, so all Unicode characters may be used in the source
of the program. In UTF-8 encoding, Unicode characters less than "\u0080’
are represented using one byte (whose most-significant bit is 0), charac-
ters in the range "\u0080" through "\u07FF’ are encoded as two bytes, in
the sequence of bits:

110XXXXX L1OXXXXXX

where the eleven digits shown as x are the least significant eleven bits of
the character, and characters in the range "\u0800” through "\uFFFF’ are
encoded as three bytes, in the sequence of bits:

11210xXXX 1OXXXXXX LOXXXXXX

where the sixteen digits shown as x are the sixteen bits of the character. If
noutf8 is given, following clauses are assumed to comprise only Unicode
characters in the range "\x00” through "\xFF’, with the more significant byte
of the encoding of each character being 0. Note: this option only has an ef-
fect as a compiler option, and applies to all programs being compiled. If
present on an options instruction, it is checked and must match the com-
piler option (this allows processing with or without utf8 to be enforced).

verbose, verboseX Sets the “noisiness” of the language processor. The digit X
may be any of the digits 0 through 5; if omitted, a value of 3 is used. The
options -noverbose and verbose0 both suppress all messages except errors
and warnings

183

Options valid on the commandline

The translator also implements some additional option words, which control
compilation features. These cannot be used on the options instruction®, and
are:

arg The -arg words option is used when interpreting programs, it indicates that
after the -arg statement, commandline arguments for ther interpreted pro-
gram follow

classpath The -classpath option allows dynamic specification of the classpath
used by the NetRexxC compiler without having to depend on the CLASS-
PATH environment variable. (since: NetRexx 3.02) .

exec The -exec words option is used when interpreting programs. With this op-
tion, no commandline arguments are possible.

ecj prefer the ecj compiler when available

keep keep the intermediate .java file for each program. It is kept in the same
directory as the NetRexx source file as xxx.java.keep, where xxx is the source
file name. The file will also be kept automatically if the javac compilation
fails for any reason.

javac prefer the javac compiler when available

keepasjava keep the intermediate .java file for each program. It is kept in the
same directory as the NetRexx source file as xxx.java, where xxx is the
source file name. Implies -replace. Note: use this option carefully in mixed-
source projects where you might have .java source files around.

nocompile do not compile (just translate). Use this option when you want to
use a different Java compiler. The .java file for each program is kept in the
same directory as the NetRexx source file, as the file xxx.java.keep (where
xxx is the source file name).

noconsole do not display compiler messages on the console (command display
screen). This is usually used with the savelog option.

savelog write compiler messages to the file NetRexxC.log, in the current direc-
tory. This is often used with the noconsole option.

time display translation, javac or ecj compile, and total times (for the sum of all
programs processed).

run run the resulting Java class as a stand-alone application, provided that the
compilation had no errors.

warnexit0 Exit the translator with returncode 0 even if warnings are issued.
Useful with build tools that would otherwise exit a build.

86Although at the moment, there will be no indication of this

184

List of Tables

Escape sequenceq 15

Concatenation operatorg 36

Arithmetic operatorq 37

Strict comparative operatorg 38

Boolean operatorg 39

Operator precedencd 41

L
4
B
B Normal comparative operatorg 38
2
b
v
B

Trace identifier tagd 96

180

185

186

Index

* multiplication operator,, B7, [21

- tracing flag,,

*-> tracing flag,,

= tracing flag,,

+ plus sign,addition operator, B7, [Z1]

+ plus sign,in parsing template, [[Tq

++ invalid sequence,, [[7]

+++ tracing flag,,
IVE’B’/@/@/@/@/ E/E/EE’E/

B3, I3, 74, B8, P1, P2, [[07, [[02, [[04, [T3, [[T7,

21, [Z7, [4, 55,
- continuation character,,
- minus sign,in parsing template, [Tq
- minus sign,subtraction operator, B7, [Z1]
. (period),as placeholder in parsing, T3
. (period),in numbers, [2(
. (period),in terms, P4
= equals sign,assignment indicator, £
= equals sign,equal operator,
= equals sign,in LOOP instruction, py
= equals sign,in parsing template, [T§
»> tracing flag,,
>a> tracing flag,,
>p> tracing flag,,
>v> tracing flag,,
$ dollar sign,in symbols,
& and operator,,
&& exclusive or operator,,
_ underscore,in symbols,
NetRexx,language definition, [[7]
\backslash,escape character, [[§
\backslash,not operator,
\= not equal operator,,
\\invalid sequence,, [[]
Rexx, Bd, B4, kd, [o6
SAY, P
address, E
arg, 8, B3, 33,
binary,
case, pd
catch,
class, [i4, Bd, B4, B2, b, Bd, Leil-fod,
constant, E, E
dependent, ,
digits, [L23

187

bd. B33, 39,
engineering,
exit, E
extends, Bd, B3, Bd, Loi1-fe3, [od
finally,
for, b7, b8, [L67
forever, @
form, (126
if, Er E' @r E' Qr E' @r Er @r

bd. 7. E, , Bted
implements, -
import, E, E
indirect,

iterate, E

label, B9, Fd, BY

leave, E, E, E, E: E

loop, B4, B4, b4, b3, 774, bd, fed, 67
method@ . B4, kg, B4, F3, Fd, B,

HH

Bd.
nop, [,

i, [od, fed-fzd, [ed, fed,

t?JE]

numeric,

options, E

otherwise, 7, BY, 39,
over,

package, E

parse, E, E, E, —, : ,

private, E, E, E

properties, @, E, E, E,

protect, E

public, B9

return, , E, @, E, , , @

returns, E, E, , 110

say, B, 4,
b4

then, B3, B9, b1, b3, b4, E3,
B9, bd. bd. Bd, o4, 39

this, Bd, B2, 4, o3, [iid

to, E, E,

trace, E, E, E, 132

until, E

upper,

when, 74, B3, B4, , [ed

while, E E ﬂ @ @

ABBREV method,,

Abbreviations,testing with ABBREV method,
139

ABS method,,

Absolute,column specification in parsing,
115

Absolute,positional pattern, [114

Absolute,value, finding using ABS method,
139

Abstract classes,, E

Abstract methods,, E, IE

ABSTRACT,on CLASS instruction, B4

ABSTRACT,on METHOD instruction, @

Abuttal concatenation operator,, E, E

Active constructs,, Q, E

Adapter classes,, E

ADAPTER,on CLASS instruction, E

Addition,definition,

Addition;.pi ,Subtraction;.pi
/Multiplication;.pi /Division, E

address option,

ADDRESS, in OPTIONS instruction, E

Address,instruction, E

Algebraic precedence,, @

ALL,TRACE setting, P3

Alphabetics,checking with DATATYPE, [l44

Alphanumerics,checking with DATATYPE, @

AND, logical operator,

Annotate,instruction, E

ANNOTATIONS, in OPTIONS instruction, E

ANSI standard,arithmetic definition, [L19

Arbitrary precision arithmetic, [118

arg words option, [L84

Arguments,of methods, ﬁ

Arguments,on METHOD instruction, E

Arguments,optional, E

Arguments,passing to methods, @,

Arguments,provided by caller, E

Arguments,required, E

Arithmetic,comparisons, [124

Arithmetic,errors,

Arithmetic,exceptions,

Arithmetic,implementation independence,

Arithmetic,NUMERIC settings, 7

Arithmetic,operation rules,

Arithmetic,operators, @, ,

Arithmetic,overflow,

Arithmetic,precision, [L20

Arithmetic,underflow,

188

Array initializer,in terms, E, E
Arrays,, @

Arrays,constructors, @

Arrays,in terms, E
Arrays,initializing, @
Arrays,references, E

ASCII,coded character set, @

Ask method,,

ASK special wozrd,,

ASKNOECHO special word,,
AskOne method,,

Assignment,, @, E
Assignment,binary, [L29
Assignment,instruction, @, E
Assignment,of literals, [129
Assignment, property initialization, E

B2D method,

B2X method,

Backslash character,escape sequence, E
Backslash character,in strings, E
Backslash character,not operator, B8
BadArgumentException,, [L70
BadColumnException,,
BadNumericException,,

Binary blocks,, [128

Binary classes,, E,

Binary classes,assignment, [129

Binary classes,binary methods, E
Binary classes,control variables, [L29
Binary classes,LOOP instruction, [129
Binary classes,NUMERIC instruction, [129
Binary constructors, [L29

Binary literals,,

Binary methods,, E,

Binary methods,assignment, [129

Binary methods,control variables, [129
Binary methods,LOOP instruction, [L29
Binary methods,NUMERIC instruction, [L129
Binary numbers,, @,

Binary numeric symbol,, E @

Binary operations,dyadic, [12§
Binary operations,monadic, [L28
Binary operations,prefix, [12§

binary option,

Binary,arithmetic,

Binary,checking with DATATYPE,
Binary,conversion to decimal,
Binary,conversion to hexadecimal,
Binary,from decimal, @

BINARY,in OPTIONS instruction, fg
BINARY,on CLASS instruction, b7
BINARY,on METHOD instruction, E
Binary,operations,

Binary,values,

Bits,binary operators, B8

Bits,checking with DATATYPE, [144
Blank,, E

Blank,adjacent to operator character, E
Blank,adjacent to special character, E

Blank,as concatenation operator, E

Blank,as type conversion operator, E

Blank,operator, E, E

Blank,removal with SPACE method,

Blank,removal with STRIP method,

Block comments,, E

Body,of a loop, E

Body,of classes, E

Body,of group, E

Body,of methods, E

Body,of select, E

Boolean operations, B8

boolean type, value of,, @

Bottom of program, reaching during
execution,, @

Bounded loop,, @

Bounded loop,controlled, E

Bounded loop,over values, E

Bounded loop,simple, E

Brackets,in array initializers, E, @

Brackets,in array references, @

Brackets,in indexed references, E

Brackets,in indexed strings, @

Brackets,in terms, E

BY phrase of LOOP instruction,, E

C2D method,, @

C2X method,, @

Carriage return character,escape sequence,
i}

Case,of names, E

CASE,on SELECT instruction, Ppd

Casting,to type, E

CATCH,on DO instruction, [

CATCH,on LOOP instruction, [

CATCH,on SELECT instruction, @

CATCH,use of,

Caught exceptions, [L3¢

CENTER method,, [i47]]

CENTRE method,, [i47]

CHANGESTR method,,

Changing strings,using CHANGESTR,

Changing strings,using TRANSLATE,

char,as a string, @

Character sets,, E

Character,, E

Character,appearance, E

Character,conversion to decimal, E

Character,conversion to hexadecimal, @

Character,converting to binary, [129

Character,encodings, @,

Character, from a number, [I44,

Character,from decimal, @

Character,from hexadecimal,

Character, glyphs, @

Character,removal with STRIP method,

charAt method,,

charin,Stream, E

charout,Stream, E

chars,Stream, @

Checked exceptions,, [L32

Class,, @

Class,body of, E

Class,definition, E

Class,filename of,

Class,instances of, @

Class,name of, E

Class,names, case of, E

Class, package of, E

Class,qualified name of, E

Class,short name of, E

CLASS, special word,

Class,starting, E

Classes,abstract, E

Classes,adapter, E

Classes,and subclasses, E

Classes,and superclasses, ﬁ

Classes,binary, E

Classes,dependent, @,

Classes,final, a

Classes,interface, E

Classes,minor, @,

Classes,parent, @,

Classes, private, E

Classes, public, E

Classes, shared, E

Classes,standard, E

classpath option, [L84

classpath option,, E

Clauses,, E

Clauses,continuation of, E

Clauses,null, @

Coded character set,ASCII, @

Coded character set,EBCDIC, @

Coded character set,Unicode, E

Coded character,, E

Coded character,conversion to decimal, @

Coded character,conversion to hexadecimal,
a4

Coded character,from decimal, E

Coded character,from hexadecimal, [L59

Collating sequence, using SEQUENCE,,

Column specification in parsing,,

Comma,in array references, @

Comma,in indexed strings, @

Comma,in method calls, @

Command line options,, E

comments option,

COMMENTS option,, 79

Comments,, E

Comments, block, E

Comments,line, E

Comments,nesting, E

Comments,starting a program with, @

compact option,

COMPACT option, [9

Comparative operators,, @

COMPARE method,, [42

Comparison,of numbers, @,

Comparison,of strings and numbers, @

Comparison,of strings/using COMPARE, @
Compiler options,, E

Compound terms,, @

Concatenation,of strings, @
Concatenation,of types, @
Conditional loops,, E

Conditional phrase,, E, @

CONSOLE option, PBd

Console, writing to with SAY,,
Constant methods,, @

CONSTANT,on METHOD instruction, @
CONSTANT,on PROPERTIES instruction, E
Constants,, E

Constants,used by classes, E
Constants,using properties, E
Constructor,Rexx(boolean),
Constructor,Rexx(byte),
Constructor,Rexx(char),
Constructor,Rexx(char[]),
Constructor,Rexx(double),
Constructor,Rexx(float),
Constructor,Rexx(int),
Constructor,Rexx(long), [L72
Constructor,Rexx (Rexx),
Constructor,Rexx(short),
Constructor,Rexx(String),
Constructor,Rexx(String[]),
Constructor,RexxSet (),
Constructor,RexxSet(int),
Constructor,RexxSet(int,byte),
Constructor,RexxSet (RexxSet),
Constructors,, @, @
Constructors,array, @
Constructors,binary, [129
Constructors,default, @
Constructors,in minor classes,
Constructors,method, @
Constructors,of dependent objects, [102
Constructors,of minor classes,
Constructors,qualified,
Constructors, special,
Constructs,active, E
Continuation,character, E
Continuation,of clauses, E

Control variable,, @, E

Controlled loops,, @
Conversion,automatic, E, E
Conversion,binary constructors, [129
Conversion,binary to decimal, [L39
Conversion,binary to hexadecimal,
Conversion,character to decimal, @
Conversion,character to hexadecimal, @

Conversion,coded character to decimal,
Conversion,coded character to hexadecimal,

a4

Conversion,cost of, E
Conversion,decimal to binary, @
Conversion,decimal to character, @
Conversion,decimal to hexadecimal, m
Conversion,explicit, @

190

Conversion, formatting numbers, [4§
Conversion,hexadecimal to binary,
Conversion,hexadecimal to character,
Conversion,hexadecimal to decimal,
Conversion,of characters, (129
Conversion,of types, @

Conversion,of well-known types, E
COPIES method,,

COPYINDEXED method,, [143

Copying a string using COPIES,,
Copying indexed variables,, [142
Counting,strings, using COUNTSTR, [43
Counting,words, using WORDS, [L5§
COUNTSTR method,, [143

crossref option,

CROSSREF option, B

D2B method,,

D2C method,, [144

D2X method,, [147

Data,conversions, @

Data,length of, E,

Data, texms, E, E

Data,type checking, @

Data,types, RO

DATATYPE method, [144

Datatypes,, E, @, E

decimal option, [L82

DECIMAL option, Bd
Decimal,conversion to binary, @
Decimal, conversion to character,
Decimal, conversion to hexadecimal, @
Declarations,of variables, @
DEFAULT_DIGITS property,,
DEFAULT_FORM property,,
Deleting,part of a string, [145
Deleting,words from a string, E
Delimiters,for comments, E
Delimiters, for strings, E

DELSTR method,, [145

DELWORD method, [45

Dependent classes,, @

Dependent classes,restrictions,
Dependent object,,

Dependent object,constructing, [LO2
DEPENDENT, on CLASS instruction, [LO2
DEPRECATED,on CLASS instruction, E
DEPRECATED,on METHOD instruction, E
DEPRECATED,on PROPERTIES instruction, E
diag option, [L82

DIAG option, B@

Diagrams, of syntax,, @

digits property,,
Digits,checking with DATATYPE, [144
DIGITS,effect on whole numbers, [L24
Digits,in numbers, [L19

DIGITS,on NUMERIC instruction, [,
DIGITS,rounding when numbers used,
DIGITS, special woxrd,
Dimension,of arrays, @

Dimension,of types, @
Dimensioned types,, @
DivideException,,
Division,definition, [L22
Division,integer,

DO group,, E

DO group,naming of, E

DO instruction,LABEL, B9

Dollar sign,in symbols, E
Double-quote,escape sequence, E
Double-quote,string delimiter, Q
Dummy instruction, NOP,, ﬁ
Duplicate methods,, ﬁ

Dyadic operators,, E

E-notation,, @,
E-notation,definition, (2§
E-notation,in symbols, E
EBCDIC,coded character set, @
ECJ option, B0

Empty reference, null,,
Encodings, of characters,, E
Encodings,binary,
Encodings,of characters, E

END clause,specifying control variable, E

End condition of a LOOP loop,, @
End-of-file character, [3
Engineering notation,, @,
ENGINEERING property,
ENGINEERING value for NUMERIC FORM,,
EOF character,, E

Equality,of objects, B8

Equality, testing of, @

equals method,,

Errors during arithmetic,,
Escape sequences in strings,, E
Euro character,, E

Euro character,in symbols, E
Evaluation,of expressions, E
Evaluation,of terms, E
Example,Hello World, E
Example,main, E

Example,of constructors, @
Example,of exception handling, [L32
Example,of two classes,
Example,program, [L68
examples,Stream, @
Exception,BadArgumentException, [L70
Exception,BadColumnException,
Exception,BadNumericException,
Exception,DivideException,
Exception,ExponentOverflowException,
Exception,NoOtherwiseException,
Exception,NotCharacterException,
Exception,NotLogicException,
Exception,NullPointerException,
Exception,NumberFormatException,
Exceptions,, [13@

Exceptions,after CATCH clause, [L32
Exceptions,after FINALLY clause, [132

191

Exceptions,checked, [L32

Exceptions,during arithmetic,

Exceptions,during conversions, @

Exceptions,listed on METHOD instruction,
rd

Exceptions,raising, @

Exceptions,signalling, @

Exceptions, throwing, @

Exclusive OR,logical operator, B8

exec option, [L84

EXISTS method,,

EXIT instruction,, @

explicit option, [182

EXPLICIT option, B9

Exponential notation,, @, E, ,

Exponential notation,definition, [125

Exponential notation,in symbols, E

Exponentiation,definition,

ExponentOverflowException,,

Expressions,evaluation, E

Expressions,examples, @

Expressions,results of, E

EXTENDS,on CLASS instruction, E

Extra digits,in numbers, [L20

Extra digits,in numeric symbols, E

Extra digits,in symbols, E

Extra letters, in symbols,, E

Extracting,a sub-string,

Extracting,words from a string, 155

False value, B8

File method,,

Final classes,, E

Final methods,, @

FINAL,on CLASS instruction, B4

FINAL,on METHOD instruction, E

FINALLY,on DO instruction, [

FINALLY,on LOOP instruction, @

FINALLY,on SELECT instruction, @

FINALLY,reached by LEAVE, pj

FINALLY,use of,

Finding a mismatch using COMPARE,, @

Finding a string in another string,, ,
152

Fixed size, of arrays,, @

flag, address,

flag, binary,

flag, nocompile, [184

flag, noconsole, [184

flag, run, [L84

flag, savelog,

flag, time, [L84

flag,arg words, [L84

flag,classpath,

flag,comments,

flag,compact,

flag,crossref,

flag,decimal,

flag,diag, [L82

flag,exec, [184

flag,explicit,

flag, format, [L82

flag,implicituses, [182

flag,java, [L87

flag, keep,

flag,keepasjava, [184

flag,logo, [182

flag,sourcedir, [182

flag,strictargs, [182

flag,strictassign, [L82

flag,strictcase, [182

flag,strictimport,

flag,strictmethods,

flag,strictprops,

flag,strictsignal,

flag,symbols,

flag,trace, traceX,

flag,utfs,

flag,verbose, verboseX,

flag,warnexito,

Floating-point numbers, binary,,

Flow control,abnormal, with SIGNAL, @

Flow control,with DO construct, E

Flow control,with IF construct, @

Flow control,with LOOP construct, E

Flow control,with SELECT construct,

FOR,phrase of LOOP instruction, E

FOR, repetitor on LOOP instruction, E

forEachline method,,

FOREVER, loops, b7

FOREVER, repetitor on LOOP instruction, E

Form feed character,, E

form property,,

FORM,option of NUMERIC instruction, ﬁ,
125

FORM, special wozrd,

format option, [182

FORMAT, method,

FORMAT,option, B@

Formatting,numbers for display, [L48§

Formatting, numbers with TRUNC,

Formatting,of output during tracing, E

Formatting,text centering, @

Formatting,text left justification, [L5@

Formatting,text right justification,

Formatting,text spacing, [L54

formword() method,,

Full name,of classes,

Fully-qualified name, of classes,, E

Functions,numeric arguments of, [L26

Functions,return from, E

Functions,used by classes, E

Glyphs,, @
Group, DO, E
Guard digit in arithmetic,

hashCode method,,
Hexadecimal numeric symbol,, E, E
Hexadecimal,checking with DATATYPE, [144

192

Hexadecimal,conversion to binary, [L59
Hexadecimal, conversion to character,
Hexadecimal, conversion to decimal,
Hexadecimal,digits in escapes, E
Hexadecimal, escape sequence, E
Hyphen,as continuation character, E

IF instruction,, @

IMPLEMENTS,on CLASS instruction, E
implicituses option, [L82
IMPLICITUSES option, B@

Implied semicolons,, E

IMPORT instruction,, B2
Imports,automatic, E
Imports,explicit, E

Indefinite loops,, E @

Indention during tracing,, E

Index strings,for sub-values, @
Index strings,testing for, m
Indexed references,arrays, @
Indexed references,in terms, E
Indexed references,indexed strings, @
Indexed strings,, @

Indexed strings,copying,
Indexed strings,merging, [L42)
Indexed strings,testing for, @
Indirect properties, [LOS
INDIRECT,on PROPERTIES instruction, [LO8
Inequality, testing of,, @

Infinite loops,, E

INHERITABLE,on METHOD instruction, @
INHERITABLE,on PROPERTIES instruction, E
Initializing arrays,, E

INSERT method,,

Inserting a string into another,
Instance, of a class,, @
Instructions,, E
Instructions,Address, E
Instructions,Annotate, E
Instructions,assignment, @, E
Instructions,CLASS, E
Instructions, DO, E

Instructions, EXIT, E

Instructions, IF, @
Instructions,IMPORT, B3
Instructions, ITERATE, |4
Instructions, keyword, @, @
Instructions, LEAVE, B4
Instructions, LOOP, E
Instructions,METHOD, 3, 5
Instructions,method call, @
Instructions,NOP, ﬁ
Instructions,NUMERIC, 77
Instructions,OPTIONS, E
Instructions, PACKAGE, B3
Instructions, PARSE, E
Instructions,PROPERTIES, B§,
Instructions,RETURN, B7
Instructions,SAY, B8
Instructions,SELECT,

Instructions,SIGNAL, Bl

Instructions, TRACE, E

INT,TRACE setting, P3

Integer division, [118

Integer division,definition,
Integers, binary,,
INTERACTIVE,TRACE setting, P3
Interface classes,, E

Interface classes,properties in, E
INTERFACE,on CLASS instruction, B4
Interfaces,implemented by classes, E
Internal functions,return from, E
Interpreter options,, E

ITERATE instruction, B4

ITERATE instruction,use of variable on, Q

java option, [L82

JAVA option, B¢

Java,in reference implementation, @
JavaBean properties,,

JAVAC option, BQ

javac option, [L84

keep option, [L84

KEEPASJAVA option, B@
keepasjava option, (.84
Keyword instructions,, @, E
Keywozxds,, @

Keywords,mixed case, @

LABEL,on DO instruction, B9

LABEL,on LOOP instruction, [fd

LABEL,on SELECT instruction, B9

Language processor options,, E

LASTPOS method, [49

Leading blanks,removal with STRIP method,
154

Leading zeros,adding with the RIGHT
method,

Leading zeros,removal with STRIP method,
154

LEAVE instruction,, Q

LEAVE instruction,use of variable on, @

LEFT method,,

LENGTH, method, [L50

Length,of arrays, E

Length,of comments, E

LENGTH, special wozrd, E,

Letters,checking with DATATYPE, [44

Line comments,, E

Line ends, effect of,, E

Line feed character,escape sequence, E

Line numbers, in tracing, E

Line, displaying,,

linein,Stream, @

lineout,Stream, @

lists,,

Literal patterns,,

Literal strings,, @

Literal strings,in terms, @

Literals, binary,,

193

Local variables,, @

Locating,a string in another string, @,
152

Locating,a word or phrase in a string, [L58

Logical operations, B8

logo option, [L82

LOGO option, B

Loops,active, @, E

Loops,execution model, @

Loops,in binary classes and methods, [129

Loops,label, @

Loops,modification of, @

Loops,naming of, @

Loops, repetitive, E, @

Loops,termination of, @

LOWER method,,

Lowercase,checking with DATATYPE, @

Lowercase,names, E

Lowercasing strings,,

Mantissa of exponential numbers,, [123
Matching methods,, E

Mathematical method,ABS, [L39
Mathematical method,DATATYPE options, @
Mathematical method, FORMAT, [L48
Mathematical method,MAX,
Mathematical method,MIN,
Mathematical method,SIGN,

MAX method,,

Merging indexed variables,, @
Method call instructions, pd, B2
METHOD instruction, [7§

Method, Rd

Method, built-in,ABBREV,
Method, built-in,ABS, [L39
Method, built-in,B2D, {139
Method, built-in,B2X, [148
Method, built-in,C2D, [143
Method, built-in,C2X, [44
Method, built-in,CENTER, [i47]
Method, built-in,CENTRE, [i47]
Method, built-in,CHANGESTR,
Method, built-in,COMPARE, [42
Method, built-in,COPIES, [14]
Method, built-in,COPYINDEXED, [143
Method, built-in,COUNTSTR,
Method, built-in,D2B, [L44
Method, built-in,D2C, [146
Method, built-in,D2X, [L47
Method, built-in,DATATYPE, [144
Method, built-in,DELSTR,
Method, built-in,DELWORD, [43
Method, built-in,EXISTS, [47
Method, built-in,FORMAT, [L4§
Method, built-in, INSERT, {49
Method, built-in,LASTPOS, [49
Method, built-in,LEFT,
Method, built-in,LENGTH,
Method, built-in,LOWER,
Method, built-in,MAX,

Method, built-in,MIN, Method, OpPow, [L75

Method, built-in,OVERLAY, [L52 Method,OpRem, [175

Method, built-in,POS, Method,OpSub, [L73

Method, built-in,REVERSE, [L52 Method,OpXor, [175

Method, built-in,RIGHT, Method, popOutputStream,
Method, built-in,SEQUENCE, Method, pushOutputStream,
Method, built-in,SIGN, Method, Say,

Method, built-in,SOUNDEX, Method, setDigits (Rexx),
Method, built-in,SPACE, [L54 Method, setForm(Rexx) ,
Method, built-in,STRIP, [L54 Method, short name of, E
Method, built-in,SUBSTR, [L54 Method,starting, @

Method, built-in,SUBWORD, Method,toboolean, [L75

Method, built-in, TRANSLATE, Method,tobyte, [L73

Method, built-in, TRUNC, Method, tobytearray,
Method, built-in,UPPER, [L56 Method,tochar, [L76

Method, built-in,VERIFY, Method, todouble, [L78

Method, built-in,WORD, Method,tofloat,

Method, built-in,WORDINDEX, [L58 Method, toint,

Method, built-in,WORDLENGTH, [L58 Method,tolong, [L76

Method, built-in,WORDPOS, Method, toRexx,

Method, built-in,WORDS, [L58 Method,toshort, [L76

Method, built-in,X2B, [L59 Method,toString, [176

Method, built-in,X2C, [i59 Methods, B7

Method, built-in,X2D, Methods,abstract, E, IE
Method,argument variables, @ Methods,arguments of, E
Method,Ask, [L76 Methods,binary, E

Method, AskOne, Methods, constant, E

Method, body of, E Methods, constructor, @, @
Method,calls in terms, @ Methods,duplicate, ﬁ

Method, charAt, [L75 Methods, final, E
Method,definition, E Methods,inheritable, E
Method,equals, [L73 Methods,invocation of, E
Method,File, Methods,native, E

Method, forEachline, Methods,overloading, E
Method, formword (), Methods,overriding,

Method, hashCode, 175 Methods, private, E
Method,names, case of, E Methods, protected, E
Method,NotEqS, [L74 Methods, public, [f4

Method, OpAdd, Methods, resolution of, E
Method, OpAnd, Methods, return values, E
Method,0pCc, Methods, searching for, E
Method,OpCcbhlank, Methods, shared, IE
Method,OpDiv, Methods, special,
Method,0pDivI, Methods, standard, E

Method, OpEq, Methods, static, E
Method,OpEqQS, [L73 METHODS, TRACE setting, B3
Method,0pGt, [L74 MIN method,,

Method,OpGtEq, [L74 Minor classes,, @
Method,OpGtEqS, [L74 Minor classes,constructing,
Method, 0pGtS, Minor classes,naming of,
Method,OpLt, [L74 Minor classes,nesting of,
Method,OpLtEq, [L74 Minor classes,restrictions,
Method,OpLtEqS, Mixed case,checking with DATATYPE, [144
Method,OpLtS, Mixed case,names, E
Method,OpMinus, [L74 MOD option,, @

Method,OpMult, [L74 Model,of loop execution, EI
Method,OpNot, [174 Monadic (prefix) operators,, E
Method,OpNotEq, Moving characters, with TRANSLATE method,,
Method,0pOx, [L74 155

Method,OpPlus, [L73 Multiplication,definition,

194

Names, special,class, (109

Names, special,sourceline, [LO4

Names,case of, E

Names,of variables, @

Names,on ITERATE instructions, @

Names,on LEAVE instructions, E

Names, special/ask,

Names, special/asknoecho, [104

Names,special/digits, [105

Names, special/form, (103

Names, special/length,

Names, special/null,

Names, special/RC,

Names, special/source, (10§

Names, special/super,

Names, special/this,

Names, special/trace,

Names, special/version, [L04

Native methods,, IE

NATIVE,on METHOD instruction, @

Negation,of logical values, 33

Negation,of numbers, @

Nesting of comments,, E

netrexx.lang package,

netrexx.lang,Exceptions, [L70

netrexx.lang,Rexx arithmetic methods,

netrexx.lang,Rexx class,

netrexx.lang,Rexx constructors,

netrexx.lang,Rexx miscellaneous methods,
75

netrexx.lang,RexxDate class, @

netrexx.lang,RexxI0 class, n74

netrexx.lang,RexxOperators class, [L7§

netrexx.lang,RexxSet class, [L78

netrexx.lang,RexxSet constructors, [L79

netrexx.lang,RexxSet methods, [L79

netrexx.lang,RexxSet properties, [L78

netrexx.lang,RexxTime class, @

Newline character,escape sequence, E

NOADDRESS option,, 9

NOANNOTATIONS option,, E

NOBINARY option, [79

NOCOMMENTS option, [9

NOCOMPACT option,, 9

nocompile option,

noconsole option,

NOCONSOLE option,,

NOCROSSREF option,

NODECIMAL option, BG

NODIAG option, B¢

NOEXPLICIT option, Bd

NOFORMAT option, B@

NOIMPLICITUSES option, B@

NOJAVA option, B¢

NOLOGO option,, Bl

NOMOD option, B1

NoOtherwiseException,,

NOP instruction,,

NOREPLACE option,, B

Normal comparative operators,, @

2

195

Normalizing a string by its sound, SOUNDEX,
NOSAVELOG option, Bl
NOSOURCEDIR option,, B
NOSTRICTARGS option,, E
NOSTRICTASSIGN option,, @
NOSTRICTCASE option,, E
NOSTRICTIMPORT option,, @
NOSTRICTPROPS option,, @
NOSTRICTSIGNAL option, B
NOSYMBOLS option, Bl

NOT operator,,
Notation,engineering, @,
Notation,scientific,
Notations,in text, E
Notations,syntax, @
NotCharacterException,,

NotEqS method,,

NotLogicException,,

NOTRACE option, B

NOUTF8 option, B2

NOVERBOSE option, B3

Null character,escape sequence, E

Null clauses,, @

Null instruction, NOP, @

NULL special wozxd,,

Null strings,, E

NullPointerException,,
NumberFormatException,,

Numbers,, @,

Numbers,arithmetic on, @, ,
Numbers,as symbols, E

Numbers, checking with DATATYPE,
Numbers, comparison of, @,
Numbers,conversion to character, ,
Numbers, conversion to hexadecimal, @
Numbers,definition, ,

Numbers,examples of, @

Numbers, formatting for display, [L4§
Numbers,in LOOP instruction, E
Numbers, rounding, [L48§

Numbers,truncating,

Numbers,use of by NetRexx, [124

Numeric symbols,, E, E

Numeric symbols,binary, E

Numeric symbols,hexadecimal, E
NUMERIC,DIGITS, [L2d

NUMERIC, FORM,

NUMERIC,in binary classes and methods, [L29
NUMERIC, instruction, [7

Numeric,part of a number, ,

Objects,comparing,
Objects,constructing, E
Objects,equality,
OFF, TRACE setting, P3
OpAdd method,,

OpAnd method,,

OpCc method,,
OpCcbhlank method,,

OpDiv method,, option,strictprops,

OpDivI method,, option,strictsignal,

OpEq method,, option,symbols,

OpEgS method,, option,trace, traceX,

Operators,, @ option,utfs,
Operators,arithmetic, @, , option,verbose, verboseX,
Operators,blank, Bg, Bg option,warnexit@, [L84
Operators,characters used for, E Optional arguments,, E
Operators,comparative, @, OPTIONS, instruction, E

Operators, composition of, E Options,on command line, E
Operators,concatenation, @ OpXor method,,

Operators,logical, OR,logical exclusive, B8
Operators,precedence (priorities) of, @ OR,logical inclusive, B8

Operators, type, E Over loops, @

OpGt method, OVER repetitor on LOOP instruction,, @
OpGtEq method,, Overflow, arithmetic,,

OpGtEqS method,, OVERLAY method,

OpGtS method,, Overlaying a string onto another,
OpLt method,, Overloaded methods,, [7

OpLtEq method, Overriding methods, Bd

OpLtEqS method,,

OpLtS method,, PACKAGE instruction,, E

OpMinus method,, Package, B, B3

OpMult method, Package,name of, B3, B3

OpNot method,, Package,netrexx.lang,

OpNotEq method,, Packing a string,with B2D,

OpOr method,, Packing a string,with B2X, [L40

OpPlus method,, Packing a string,with X2C,

OpPow method,, [175 Parent class,

OpRem method,, Parent object,

OpSub method,, [L75 Parent,of dependent object, [LO2
Option woxds,, @ PARENT, special woxd,

option, address, Parentheses,adjacent to blanks, E
option, binary, Parentheses,in expressions, Bg, [d
option, nocompile, [L84 Parentheses,in method calls, E E
option, noconsole, Parentheses,in parsing templates,
option, run, [L84 Parentheses,in terms, @

option, savelog, Parentheses,omitting from method calls,
option, time, [184 B3, B3

option,arg words, [.84 PARSE, instruction, E
option,classpath, PARSE, parsing rules,
option,comments, Parsing templates,in PARSE instruction, E
option,compact, Parsing,absolute columns, [L153
option,crossref, Parsing,definition,
option,decimal, [L82 Parsing, general rules, ,
option,diag, Parsing,introduction,
option,exec, [L84 Parsing,literal patterns,
option,explicit, [182 Parsing,positional patterns, [L13
option,format, [L82 Parsing,selecting words, [114
option,implicituses, [L82 Parsing,variable patterns,
option,java, Period,as placeholder in parsing,
option, keep, [L84 Period,in numbers, [L20
option,keepasjava, [L84 Period,in terms, E

option,logo, popOutputStream method,,
option,sourcedir, [L82 POS position method,,
option,strictargs, [L82 Positional patterns, [L13
option,strictassign, Power operator, E

option,strictcase, Power operator,definition,
option,strictimport, [L82 Powers of ten in numbers,, @,
option,strictmethods, Precedence of operators,, @

196

Precision,arbitrary,
Precision,of arithmetic, [L20
Prefix operators,, E

Prefix operators,+, @

Prefix operators,+/with types, @
Prefix operators, -, @

Prefix operators,-/with types, E
Prefix operators,\,

Prefix operators,\/with types, @
Prefix operators,arithmetic,
Primitive types,, ,
Primitive types,conversions, E
Priorities of operators, @
PRIVATE,on CLASS instruction, E
PRIVATE,on METHOD instruction, E
PRIVATE,on PROPERTIES instruction, E
Program,filename of, [LO5
Program,prolog, E
Program,structure, E
Programmer’s model of LOOP, @
Programs,, @

Programs,examples, [L68
Programs,structure, E

Prolog, of a program, E
PROPERTIES instruction, B3,
Properties,, , @, @
Properties,case of names, @
Properties, constant, E
Properties,deprecated, E
Properties,for JavaBeans,
Properties,in dependent classes, ,
Properties,in interface classes, E
Properties,in minor classes,
Properties,indirect, [LO8
Properties,inheritable, E
Properties,initialization, E
Properties,modifiers, E
Properties,naming, E
Properties,private, E
Properties,public, E

Properties, shared, E
Properties,static, E

Properties, transient, E
Properties,unused, E
Properties,visibility, B4
Properties,volatile, @

Property, DEFAULT_DIGITS,
Property, DEFAULT_FORM,
Property,digits, 178

Property, ENGINEERING,
Property, form, [L79
Property,SCIENTIFIC,
PROTECT,on DO instruction, B9
PROTECT,on LOOP instruction, @
PROTECT,on METHOD instruction, E
PROTECT,on SELECT instruction, E
Protected methods,, E

PUBLIC,on CLASS instruction, E
PUBLIC,on METHOD instruction, @
PUBLIC,on PROPERTIES instruction, E

197

Pure numbers,,
pushOutputStream method,

gtime example program, [L69
Qualified name, of classes,, E
Qualified types, R0

Quotes in strings,, @

Rexx (boolean) constructor,,

Rexx (byte) constructor,,

Rexx(char) constructor, [L72

Rexx(char[]) constructor, [172

Rexx (double) constructor, [L72

Rexx(float) constructor, [L72

Rexx(int) constructor, [L72

Rexx(long) constructor, [L72

Rexx (Rexx) constructor,,

Rexx(short) constructor,,

Rexx (String) constructor,, 72

Rexx (String[]) constructor,,

Rexx,arithmetic, [118

Rexx,class/NetRexx strings, @

Rexx,class/conversions, E

Rexx,class/methods of, [13§

Rexx,class/use by PARSE, @

RexxSet() constructor, [L79

RexxSet(int) constructor,,

RexxSet(int,byte) constructor,,

RexxSet (RexxSet) constructor,,

Raising exceptions,, @

RC special worxd,,

Re-ordering characters,with TRANSLATE
method,

Real numbers, binary,,

Reference implementation,, @

References,in terms, @

References,null,

References,to arrays, @

References,to current object, [LO4

References,to indexed strings, E

References,to methods, @

Relative column specification in parsing,,
114

Relative positional pattern, [L16

Remainder operator, [118

Remainder operator,definition,

Remainder operator;.pi ,Integer
division;.pi /Exponentiation, @

Repeating a string with COPIES,

Repetitive loops,, @

Repetitor phrase,, @

REPLACE option, B1

Replacing strings,using CHANGESTR, @

Replacing strings,using TRANSLATE, [155

Required arguments,, E

Resolution of methods,, E

Results,of methods, @

Results,returned by RETURN, B7

Results,size of, E

RESULTS, TRACE setting, E

Return character,escape sequence, E Special characters,used for operators, E

Return code, setting on exit, E Special methods,,
RETURN instruction,, E Special methods, super, ,
Return string, setting on exit, @ Special methods,this,
Return Types, B1 Special words,, [L04
RETURNS,on METHOD instruction, E Special words,ask,
REVERSE method,, Special words,asknoecho, [104
RIGHT method,, Special words,class, [LO5
Rounding,, Special words,digits, [L0§
Rounding,definition, Special words,form, [105
Rounding,when numbers used, Special words,length,
run option, [184 Special words,null,
Running off the end of a program, E Special words,parent,
Special words,RC,

savelog option, [184 Special words,source, [L65
SAVELOG option, BI Special words,sourceline, [L04
Say method,, Special words,super, [LO4
SAY,instruction, Special words,this, , 106
Scientific notation, Fg, [23 Special words,trace, [L6g
SCIENTIFIC property, Special words,version, [L04
SCIENTIFIC value for NUMERIC FORM, [7 Square brackets,in array initializers, PJ,
Search order,for methods, 8§ @
Search order,for term evaluation, P4 Square brackets,in indexed references, P
Searching a string for a word or phrase, Standard classes,, E

r Standard methods,, E
Select,label, B9 Static methods, [4
Select,naming of, B9 Static methods,used by classes, b§
Semicolons, [3 Static variable typing, B3
Semicolons,can be omitted, [7 STATIC,on METHOD instruction, [74
Semicolons,implied, [i§ STATIC,on PROPERTIES instruction, B4
SEQUENCE method,, stderr, used by TRACE, @
setDigits(Rexx) method,, stdin, reading with ASK,
setForm(Rexx) method,, stdin, reading with ASKNOECHO,,
setOutputStream method, stdout, writing to with SAY,
SHARED,on CLASS instruction, E stream,Stream, @
SHARED,on METHOD instruction, @ Strict comparative operators,, @
SHARED,on PROPERTIES instruction, E strictargs option, [L82
Shebang, [i4 STRICTARGS option, B
Short name,of classes, E, strictassign option, [182
Short name,of methods, @ STRICTASSIGN option,, E
SIGN method,, strictcase option, [L82
SIGNAL instruction, P71 STRICTCASE option, B
Signals,, strictimport option, [182
SIGNALS,on METHOD instruction, [74 STRICTIMPORT option, B
Significand of exponential numbers,, strictmethods option,
Significant digits, in arithmetic, [126 strictprops option,
Signs in parsing templates,, STRICTPROPS option,, E
Simple DO group, B8 strictsignal option,
Simple number,, E STRICTSIGNAL option,, @
Simple repetitor phrase,, @ Strings,, @
Simple texms,, @ Strings,as literal constants, @
Single-quote,escape sequence, E Strings,comparison of, @
Single-quote,string delimiter, @ Strings,concatenation of, E
SOUNDEX method,, Strings,escapes in,
SOURCE special worxd, Strings,in terms, E
sourcedir option, [L82 Strings,indexed, @
SOURCEDIR option,, @ Strings,length of, (50
SOURCELINE, special worxd, Strings,lowercasing,
SPACE method, Strings,moving with TRANSLATE method,
Special characters,, E Strings,null, E

198

Strings,quotes in, E

Strings,sub-values of, @

Strings,types of, @

Strings,uppercasing,

Strings,verifying contents of,

STRIP method,,

Structured Lists, (L34

Stub, of term,, E

Sub-expressions, in terms,, E

Sub-keywords,, @

Sub-string, extracting,,

Sub-values, of strings,, @

Subclass of a class,, E

Subroutines,calling, E

Subroutines,passing back values from, E

Subroutines,return from, E

Substitution,in expressions, E

SUBSTR method,,

Subtraction,definition,

SUBWORD method,,

SUPER, special method, ,

SUPER, special word, [104

Superclass of a class,, E

Symbol characters,checking with DATATYPE,
fad

symbols option,

SYMBOLS option,, B

Symbols,, E

Symbols,assigning values to, E

Symbols, case of, @

Symbols,in terms, E

Symbols, numeric, E, E

Symbols,use of, E

Symbols,valid names, E

Syntax diagrams,notation for, @

Syntax notation,, @

System-dependent options,, E

Tab character,, E

Tab character,escape sequence, E

Tabulation character,, E

Templates, parsing,general rules,

Templates, parsing,in PARSE instruction,
B4

Ten, powers of,

Terminal, writing to with SAY,

Texrms,, E, E

Texrms, compound, E

Terms,evaluation of, E

Terms,in assignments, @

Terms,on left of =, @

Terms,parsing of, E

Terms,simple, @

Terms,stub of, E

Testing for indexed variables,,

THEN, following IF clause, @

THEN, following WHEN clause,

THIS, special method,

THIS, special word, [03, [06

Thread, tracing, @

199

Threads,

time option,

Time,Civil, [63

Time,Elapsed, @

Time,Hours, @

Time,Long, @

Time,Minutes, @

Time,Normal, @

Time,Reset, @

Time, Seconds, @

TO phrase of LOOP instruction,, E

toboolean AskOne,,

toboolean method,,

tobyte method,,

tobytearray method,,

tochar method,,

todouble method,,

tofloat method,,

toint method,,

Tokens,, E

tolong method,,

toRexx method, [L76

toshort method,,

toString method,,

Trace setting, E

Trace setting,altering with TRACE
instruction, B3

trace, traceX option,

Trace,context, E

TRACE, instruction, B2

TRACE, option, BJ

TRACE, special word,

Tracing,clauses, E

Tracing,data identifiers, E

Tracing,execution of programs, E

Tracing,line numbers, E

Tracing,variables, E

Trailing blanks,removal with STRIP method,
154

Trailing zeros,,

TRANSIENT,on PROPERTIES instruction, E

TRANSLATE method,,

Translation,with TRANSLATE method,

Trapping of exceptions,, E

True value, B§

TRUNC method,,

Truncating numbers, [L56

Types,, @

Types,checking instances of, E

Types,checking with DATATYPE, [144

Types,concatenation of, E

Types,conversions, @

Types,declaring, @

Types,dimensioned, EI

Types,of terms, E

Types,of values, E

Types,operations on, E

Types,primitive, E,

Types,qualified, E

Types,simplification, E

Underflow, arithmetic,,
Underscore,in symbols, @
Unicode,coded character set, E
Unicode,escape sequence, E
Unicode,UTF-8 encoding, E
Unpacking a string,with C2X, @
Unpacking a string,with X2B, [L59
UNTIL phrase of LOOP instruction,, E
UNUSED, on PROPERTIES instruction, E
UPPER method,,
Uppercase,checking with DATATYPE, [144
Uppercase, names, E

Uppercasing strings,,

USES,on CLASS instruction, B

UTF-8 encoding,, E

utf8 option,

UTF8 option, B2

Variable reference,in parsing template,
Variables,, E
Variables,controlling loops, @
Variables,in parsing pattezrns,
Variables, indexed, @
Variables,local, @
Variables,method arguments, @
Variables, names of, @
Variables,parsing of, @
Variables, properties, @
Variables,scope of, E
Variables,setting new value, E
Variables,static typing of, @
Variables,subscripts, @
Variables,type of, @
Variables,valid names, @
Variables,visibility, §§

VERBOSE option,, B3

verbose, verboseX option,
VERBOSEn option, B3

VERIFY method,,

VERSION special woxd,,
Visibility,of classes, E
Visibility,of methods, [74
Visibility,of properties, E
VOLATILE,on PROPERTIES instruction, EE

WARNEXITO option, BJ

warnexit@ option, [184

Well-known conversions,, E

WHILE phrase of LOOP instruction,, E
White space,, E

Whole numbers,, @

Whole numbers,checking with DATATYPE, @

Whole numbers,definition, [L24
WORD method,,

WORDINDEX method,,
WORDLENGTH method,,
WORDPOS method,,

WORDS method,,

Words, special,class, [LO3

200

Words, special,sourceline, [104
Words,counting, using WORDS, [L58
Words,deleting from a string, @
Words,extracting from a string, ,
Words,finding in a string, [L58
Words,finding length of, [L58

Words,in parsing, [L14

Words,locating in a string,

Words, special/ask,
Words,special/digits, [L0j
Words,special/form, [LO5

Words, special/length,

Words, special/null,
Words,special/RC, [LOF

Words, special/source, [LO35

Words, special/super,

Words, special/this,
Words, special/trace,
Words,special/version, [LO4

X2B method,,
X2C method,,
X2D method,,
XOR, logical operator,,

Zero character,escape sequence, E
Zeros,adding on the left,
Zeros,padding,

Zeros,removal with STRIP method,

ISBN 978-90-819090-1-3

97789081

909013

201

	The NetRexx Programming Series
	Introduction
	Language Objectives
	Language Concepts
	Acknowledgements
	Introduction to the current edition

	NetRexx Language Definition
	Notations
	Characters and Encodings
	Structure and General Syntax
	Types and Classes
	Terms
	Methods and Constructors
	Type conversions
	Expressions and Operators
	Clauses and Instructions
	Assignments and Variables
	Indexed strings and Arrays

	Keyword Instructions
	Annotation instruction
	Address instruction
	Class instruction
	Do instruction
	Exit instruction
	If instruction
	Import instruction
	Iterate instruction
	Leave instruction
	Loop instruction
	Method instruction
	Nop instruction
	Numeric instruction
	Options instruction
	Package instruction
	Parse instruction
	Properties instruction
	Return instruction
	Say instruction
	Select instruction
	Signal instruction
	Trace instruction

	Program structure and concepts
	Program defaults
	Minor and Dependent classes
	Special names and methods
	JavaBean Support
	Parsing templates
	Numbers and Arithmetic
	Binary values and operations
	Exceptions
	Thread Pool Support
	Structured Lists Interface

	Built-in methods for NetRexx strings
	abbrev(info [,length])
	abs()
	b2d([n])
	b2x()
	center(length [,pad])
	centre(length [,pad])
	changestr(needle, new)
	charin(name, [start], [length])
	charout(name,[char],[start])
	chars(name)
	compare(target [,pad])
	copies(n)
	copyindexed(sub)
	countstr(needle)
	c2d()
	c2x()
	datatype(option)
	date()
	delstr(n [,length])
	delword(n [,length])
	d2b([n])
	d2c()
	d2x([n])
	exists(index)
	format([before [,after]])
	insert(new [,n [,length [,pad]]])
	lastpos(needle [,start])
	left(length [,pad])
	length()
	linein(name,string)
	lineout(name,string)
	lower([n [,length]])
	max(number)
	min(number)
	overlay(new [,n [,length [,pad]]])
	pos(needle [,start])
	reverse()
	right(length [,pad])
	sequence(final)
	sign()
	soundex()
	space([n [,pad]])
	stream(name, [operation], [stream_command])
	strip([option [,char]]])
	substr(n [,length [,pad]])
	subword(n [,length])
	time()
	translate(tableo, tablei [,pad])
	trunc([n])
	upper([n [,length]])
	verify(reference [,option [,start]])
	word(n)
	wordindex(n)
	wordlength(n)
	wordpos(phrase [,start])
	words()
	x2b()
	x2c()
	x2d([n])

	Classic Rexx compatible functions
	date()
	time()
	charin(name,[start], [length])
	charout(name,[char],[start])
	chars(name)
	linein(name,string)
	lineout([name],[string],[line])
	lines(name)
	stream(name, [operation], [stream_command])

	Appendix A - A Sample NetRexx Program
	Appendix B - The netrexx.lang Package
	Exception classes
	The Rexx class
	Rexx constructors
	Rexx arithmetic methods
	Rexx miscellaneous methods
	The RexxIO class
	The RexxRexx class
	The RexxOperators interface class
	The RexxSet class

	Appendix C - Translator Options
	List of Tables
	Index

